Standard treatment for prostate cancer may encourage spread of disease

Oct 01, 2007

A popular prostate cancer treatment called androgen deprivation therapy may encourage prostate cancer cells to produce a protein that makes them more likely to spread throughout the body, a new study by Johns Hopkins researchers suggests.

Although the finding could eventually lead to changes in this standard treatment for a sometimes deadly disease, the Johns Hopkins researchers caution that their discovery is far too preliminary for prostate cancer patients or physicians to stop using it. The therapy is effective at slowing tumor growth, they emphasized.

David Berman, an assistant professor of pathology, urology and oncology at The Johns Hopkins University School of Medicine, and his colleagues identified the unsuspected potential problem with treatments that suppress testosterone after discovering that the gene that codes for the protein, called nestin, was active in lab-grown human prostate cancer cells.

Curious about whether prostate cancer cells in people also produce nestin, the researchers looked for it in cells taken from men who had surgery to remove locally confined cancers of their prostates and found none. But when they looked for nestin in prostate cancer cells isolated from patients who had died of metastatic prostate cancer - in which cancer cells spread out from the prostate tumor - they found substantial evidence that the nestin gene was active.

What was different, Berman speculated, is that androgen deprivation therapy, a treatment that reduces testosterone in the body, is generally given only when prostate cancers become aggressive and likely to metastasize.

Because prostate cancer growth is typically stimulated by testosterone, the treatment is thought to slow tumor growth and weaken the disease. Patients who eventually die because their disease metastasizes are almost certain to have received this type of therapy, he says.

Speculating that depriving cells of androgens might also, however, affect nestin expression, the researchers experimented on a prostate cancer cell line that depends on androgens to grow. When they removed androgens from the chemical mixture that the cells live in, their production of nestin increased.

Aware that the nestin gene has long been suggested to play some role in cell growth and development, Berman and his colleagues used a bit of laboratory sabotage called RNA interference to decrease the genetic expression of nestin and found that these cells weren’t able to move around and through other cells nearly as well as cells with normal nestin levels.

Prostate cancer cells with hampered nestin expression were also less likely than normal prostate cancer cells to migrate to other parts of the body when transplanted into mice. However, while nestin expression seemed pivotal for metastasis in these experiments, it didn’t seem to make a difference in tumor growth.

“What all this suggests is that nestin levels increased when prostate cancer cells are deprived of androgens and may encourage the cells to metastasize,” says Berman.

Source: Johns Hopkins Medical Institutions

Explore further: Survival hope for melanoma patients thanks to new vaccine

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

21 hours ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

It slices, it dices, and it protects the body from harm

Mar 01, 2014

An essential weapon in the body's fight against infection has come into sharper view. Researchers at Princeton University have discovered the 3D structure of an enzyme that cuts to ribbons the genetic material ...

Boosting immune therapy for cancer with nanoparticles

Jul 15, 2013

(Phys.org) —Activating the body's immune system to attack cancer and prevent it from recurring is one of the Holy Grails of cancer research because of its ability to specifically target cancer and to search almost anywhere ...

Recommended for you

Survival hope for melanoma patients thanks to new vaccine

56 minutes ago

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

New clinical trial launched for advance lung cancer

4 hours ago

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

User comments : 0

More news stories

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

Naps help infants learn

Sleep is essential in helping young children apply what they learn, according to new research by Rebecca Gómez, associate professor in the UA Department of Psychology. In this Q&A, she talks about her new ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...