Enzyme's second messenger contributes to cell overgrowth

Sep 26, 2007

Scientists at the University of California, San Diego (UCSD) School of Medicine have uncovered a novel pathway by which hormones elevated in inflammation, cancer and cell injury act on cells to stimulate their growth.

The research team led by Joan Heller Brown, Ph.D., professor and chair of the department of pharmacology at UCSD, has demonstrated in a mouse model that a newly discovered subtype of the phospholipase C (PLC) family of enzymes, called PLC-epsilon, has the unique ability to activate a second and distinct signaling pathway that cells require for proliferation. The study is currently on line in advance of publication by the Proceedings of the National Academy of Science.

The studies reported in the PNAS demonstrate that “in the cell, hormones that activate small G proteins are highly dependent on PLC-º to generate second messengers,” said Heller Brown. “In addition, and more surprisingly, we discovered that this enzyme is required for cell growth because it serves a second function when activated by hormones.”

Many intracellular signaling proteins work as molecular “switches.” The reception of a signal activates them and causes them to pass the signal through the cell, after which they can be switched off until another signal is received. G proteins are a commonly used form of switch, activated by the binding of guanine nucleotides.

PLC’s normal role is delivering signals from outside the cell to inside the cell by generating “second messengers” that tell cells to contract and secrete. But these signals alone are not enough to cause cells to increase their growth. The first author of the paper, Simona Citro, Ph.D., and colleagues found that PLC-º uniquely activates a second and distinctly different signaling cascade. This second signal catalyzes activation of a Ras family of small G proteins associated with cell growth.

“In combination with the first set of signals, this can lead to cell proliferation and could contribute to inflammation or cancer if left unchecked,” said Citro.

“PLC plays a critical role in physiological processes including heart function, cell secretion and blood pressure control, so one would not normally want to block its activity,” added Heller Brown. The UCSD researchers’ discovery may enable scientists to target this novel PLC isoform or inhibit only its second function, preventing pathological responses while leaving PLC’s critical positive role intact.

Source: University of California - San Diego

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

A molecular compass for bird navigation

Feb 27, 2015

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

Recommended for you

3-D printing offers innovative method to deliver medication

4 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.