Droplets that Roll Uphill

Sep 24, 2007
Climbing Droplets
Droplets of a glycerol-water mixture defy gravity to climb up hill, provided the surface under them is shaken in the right way. The discovery may lead to new methods to manipulate microscopic amounts of fluids. Credit: P. Brunet, J. Eggers, and R.D. Deegan

A recent experiment conducted by physicists at University of Bristol in the United Kingdom has shown that liquid drops can defy gravity. Droplets of liquid on an inclined plate that is shaken up and down can travel uphill rather than sliding down. In fact, if the plate vibrates at the right rate, the droplets will always travel counter-intuitively up the incline.

The reason has to do with pushing and pulling. As the plate rises, it pushes the droplet upward, and as it falls, it pulls the droplet down. Inertia would have the droplet slide down as the plate moved upward. Similarly, the droplet would climb up the incline as the plate drops, resisting the rapid downward acceleration.

However, the forces that hold the droplet to the plate are stronger as the plate rises. During the time that the droplet would be moving downhill, it is stuck more firmly to the plate. Therefore, the droplet gains more ground moving up the incline as the plate falls than it loses as the plate rises. Overall, the droplets travel uphill.

If the vibration doesn't apply enough force to the droplet, it will just sit still on the inclined plate. As the force increases, the droplet will begin to slide. Increasing the forces further, the droplet sits still again. Turn up the force on the droplet a little more, and it starts to climb.

Since the droplet must withstand a fair amount of force, alternately pushing and pulling, the fluid has to be somewhat thick or viscous. Pure water droplets will break apart before the forces are strong enough to cause them to climb. On the other end, the drops move very slowly if the fluid is too thick. Nevertheless, this method for moving droplets using vibrations may prove useful in the manipulation of microscopic fluids.

Citation: P. Brunet, J. Eggers, and R.D. Deegan, Physical Review Letters, forthcoming article

Source: American Physical Society

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Beijing issues rare air pollution alert

Feb 21, 2014

When the air gets really bad, Beijing says it has an emergency plan to yank half the city's cars off the road. The only problem is: It may be difficult to ever set that plan in motion.

How the kettle got its whistle

Oct 25, 2013

(Phys.org) —Researchers have finally worked out where the noise that makes kettles whistle actually comes from – a problem which has puzzled scientists for more than 100 years.

Recommended for you

How to test the twin paradox without using a spaceship

13 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.