New understanding of basic units of memory

Sep 19, 2007

A molecular “recycling plant” permits nerve cells in the brain to carry out two seemingly contradictory functions – changeable enough to record new experiences, yet permanent enough to maintain these memories over time.

The discovery of this molecular recycling plant, detailed in a study appearing early online Sept. 19 in the journal Neuron, provides new insights into how the basic units of learning and memory function. Individual memories are “burned onto” hundreds of receptors that are constantly in motion around nerve synapses – gaps between individual nerve cells crucial for signals to travel throughout the brain.

According to the study’s leader, Duke University Medical Center neurobiologist Michael Ehlers, M.D., Ph.D., these receptors are constantly moving around the synapse and often times they disappear or escape. Ehlers discovered that a specific set of molecules catch these elusive receptors, take them to the recycling plant where they are reprocessed and returned to the synapse intact.

“These receptors constantly escape the synapse and are in a perpetual state of recycling,” said Ehlers, who is also a Howard Hughes Medical Institute investigator. “This process occurs on a time scale of minutes or hours, so the acquisition of new neurotransmitter receptors and their recycling is an on-going process. Memory loss may result from receptors escaping from the synapse.”

All this activity takes place on millions of tiny “nubs,” or protrusions in the synapses known as dendritic spines. The recycling plants are located within the body of these dendritic spines.

“We believe that the existence of this recycling ability explains in part how individual dendritic spines retain their unique identity amidst this constant molecular turnover,” Ehlers said. “The system is simultaneously dynamic and stable.”

While these findings should be able to help neurobiologists as they attempt to understand the molecular foundations of learning and memory, Ehlers believes that this knowledge could also be helpful in explaining what happens in certain neurological disorders, such as Alzheimer’s disease, schizophrenia, or learning disorders like autism.

For example, it appears that in animal models of the early phases of Alzheimer’s disease, often before any symptoms become apparent, the dendritic spines gradually lose their ability to transport and recycle the receptors.

“If the receptors don’t get recycled, you see a gradual loss of synaptic function that is associated with reduced cognitive ability,” Ehlers said. “These dendritic spines are where learning and memories reside. These are the basic units of memory.”

Source: Duke University Medical Center

Explore further: Serotonin neuron subtypes: New insights could inform SIDS understanding, depression treatment

add to favorites email to friend print save as pdf

Related Stories

Why the Sony hack isn't big news in Japan

11 hours ago

Japan's biggest newspaper, Yomiuri Shimbun, featured a story about Sony Corp. on its website Friday. It wasn't about hacking. It was about the company's struggling tablet business.

Hopes, fears, doubts surround Cuba's oil future

12 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

Ancient clay seals may shed light on biblical era

12 hours ago

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Off-world manufacturing is a go with space printer

14 hours ago

On Friday, the BBC reported on a NASA email exchange with a space station which involved astronauts on the International Space Station using their 3-D printer to make a wrench from instructions sent up in ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

amiya
not rated yet Aug 13, 2008
Beautiful article. Please write more on recent advances on memory research.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.