Cell growth technology promises more successful drug development

Sep 19, 2007

Scientists have developed unique technology to grow stem cells and other tissue in the laboratory in conditions similar to the way they grow in the human body.

The technology, developed and patented by scientists at Durham University and its spin-out company ReInnervate Limited, is a plastic scaffold which allows cells to be grown in a more realistic three-dimensional (3D) form compared to the traditional flat surface of a Petri dish.

Evidence gathered by the research team shows that the technology is a cheap and straightforward way of cultivating cells in 3D. Using it could lead to more successful drug development programmes and a reduction in unnecessary tests on animals.

A study proving the effectiveness of the scaffold, funded by ReInnervate and the Engineering and Physical Sciences Research Council (EPSRC), is published today in the Journal of Anatomy.

A large proportion of drugs fail at the testing stage, costing industry millions of pounds in research and development costs and failed drugs trials every year. At the moment, most drugs in development are first tested on cells grown in two-dimensions (2D) in standard laboratory equipment such as Petri dishes or flasks but cells in the human body form tissues and grow in more complex, three-dimensional ways.

The new study tested the toxic effect of a cancer drug called Methotrexate (MTX) on liver cells grown in three and two dimensions. Liver cells are frequently used in the drug development industry to test the toxicity of drugs and MTX is known to cause liver damage at high doses.

Tests showed that the structure and properties of the cells grown using the 3D scaffold were most similar to liver cells found in the human body, compared with the 2D cells which appeared “disorganised” when viewed under the microscope.

When subject to doses of MTX, cells grown in 2D died at very low concentrations, whereas 3D cells grown using the scaffold were far more robust and more accurately reflected the behaviour of cells in the human body when subjected to similar doses of the drug.

Dr Stefan Przyborski, a senior researcher with Durham University and Chief Scientific Officer of ReInnervate, has tested ten different tissue types on the scaffold, including bone, liver, fat and stem cells from bone marrow, and is marketing the product for commercial use.

The scaffold is made of highly porous polystyrene, is about the size of a ten pence piece and resembles a thin white disc. It has a structure resembling that of a sponge and is riddled with tiny holes which scientists are able to populate with cells which are then cultivated under laboratory conditions.

The technology has potential to be used to grow human stem cells for drug development. Their use may reduce the need for the tests on animals that are usually the next step before progressing to clinical trials in humans.

Another current use of the scaffold involves growing skin cells which are being used by the cosmetics industry to test cosmetics.

Dr Przyborski said: “Our results suggest that testing drugs on liver cells using our 3D culture system may be more likely to reflect true physiological responses to toxic substances. Because the 3D cells are cultivated under more realistic conditions, it means that they function more like real tissues.

“Scientists are therefore able to gain a more accurate idea of how a drug will behave in the human body, knowledge which can contribute to improving the efficiency of drug discovery, reducing drug development costs, and may help reduce the number of animals in research.

“There are other ways to growing cells in 3D in the laboratory. However, these approaches are restricted by their variability, complexity, expense and they are not easily adapted to routine use in high throughput screening studies.

“Our technology is essentially a well engineered piece of plastic that provides a suitable environment for cells to grow more naturally in a 3D configuration. Our product is available off-the-shelf, it is easy to use in routine applications, it is highly adaptable to different tests, it is inert and it is cheap and easy to produce and manufacture.”

Source: Durham University

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Patent issued for substance with medical benefits

Nov 04, 2014

A novel jelly-like substance developed by Kansas State University researchers was recently issued a U.S. patent. The substance may be used for biomedical applications, ranging from cell culture and drug delivery to repairing ...

MaxBin: Automated sorting through metagenomes

Sep 29, 2014

Microbes – the single-celled organisms that dominate every ecosystem on Earth - have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

1 hour ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

1 hour ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

5 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.