Carbon Nanotubes Store Hydrogen in Step Toward Hydrogen Vehicles

Feb 16, 2006
SSRL Stores Hydrogen in Step Toward Hydrogen Vehicles

Imagine this: your fuel gauge is hovering near empty. You stop by the nearest store, turn in your empty hydrogen cartridge, buy a full one and pop it into your car. Presto, you’re on your hydrogen-powered way again, emitting just the faintest traces of water out the tailpipe.

Researchers at SSRL and Stanford have taken a step closer to this futuristic vision by adding hydrogen to tiny cylinders made entirely out of carbon. Carbon nanotubes, 50,000 times narrower than a human hair, have excited the imaginations of scientists hoping to make nano-electronics. Recent experiments at SSRL and the Advanced Light Source in Berkeley have shown that the tubes are also a promising material for storing hydrogen safely, efficiently and compactly.

The basic idea is this: use electricity to split water into hydrogen (and oxygen) atoms, put the hydrogen into a fuel cell, which strips the electron from the hydrogen atom and forces it across a membrane, generating an electrical current which can power your car. The hydrogen ions are reunited with oxygen, making a watery exhaust.

In their attempt to store hydrogen, the researchers bombarded a film of carbon nanotubes with a hydrogen beam. Then they studied the film with different x-ray spectroscopy techniques to see if any hydrogen atoms had formed chemical bonds with the carbon. To their delight, they found that about 65 percent of the carbon atoms had bonded to hydrogen atoms.

“It was a surprise that we could get so many carbon-hydrogen bonds. It gives us hope it can be used as a material for storing hydrogen,” said Anders Nilsson (Materials Research).

Single-walled carbon nanotubes are essentially a one-atom-thick layer of carbon rolled into a tube. All the carbon atoms are on the surface, allowing easy access for bonding. The carbon atoms have double bonds with each other. The incoming hydrogens break the double bonds, allowing a hydrogen to attach to a carbon while the carbon atoms renew their grip on each other with single bonds. The carbon nanotubes offer safe storage because the hydrogen atoms are bonded to other atoms, rather than freely floating as a potentially explosive gas.

The researchers estimated that five percent of the total weight of the hydrogenated nanotubes came from the hydrogen atoms, and they are already working to boost that number. For its FreedomCAR program, the Department of Energy has set the goal of developing a material that can hold six percent of the total weight in hydrogen by the year 2010. Because hydrogen is the lightest element, the storage material also needs to be light—as is carbon—to hold a high percentage of hydrogen by weight.

In addition to upping the weight percent of hydrogen, researchers also need to overcome challenges in releasing the stored hydrogen so it can be used in a fuel cell. Currently the hydrogen-carbon bonds break above 600 °C, but two cycles of hydrogenating the carbon nanotubes and then breaking the hydrogen-carbon bonds appears to cause defects in the tubes. Ideally, the hydrogen would be released at 50 to 100 °C. Adding metal catalysts and adjusting the radius of the tubes are potential solutions.

This was the first experiment conducted on the new SPEAR3 beamline 5-1. The work was supported by the Global Climate Energy Project as well as the DOE.

Source: Stanford Linear Accelerator Center, by Heather Rock Woods

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

add to favorites email to friend print save as pdf

Related Stories

Peering into giant planets from in and out of this world

Jul 17, 2014

Lawrence Livermore scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside ...

Evidence confirms combustion theory

Jul 01, 2014

(Phys.org) —Researchers at the Department of Energy's Lawrence Berkeley National Lab (Berkeley Lab) and the University of Hawaii have uncovered the first step in the process that transforms gas-phase molecules ...

Directly visualizing hydrogen bonds

Jul 15, 2014

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules—the ...

Boron 'buckyball' discovered

Jul 13, 2014

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Recommended for you

Graphene surfaces on photonic racetracks

11 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

12 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

13 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0