Chronic infection persists by targeting stromal cell network in lymphoid organs

Sep 18, 2007

One of the biggest challenges to treating infectious diseases and developing preventive vaccines is the ability of many chronic infections to suppress the immune T-cell response over time. An Emory-led team of scientists has discovered one important way in which chronic viral infections are able to evade the immune response. The research is reported this week online in the Proceedings of the National Academy of Sciences.

Using a mouse model, the scientists found that a chronic strain of lymphocytic choriomeningitis virus (LCMV) targeted a type of stromal cells in the lymphoid organs called fibroblastic reticular cells (FRC). In contrast, an acute strain of the virus had little effect on the FRC cells. FRC provide a three-dimensional framework used by immune cells to travel and interact with other immune cells within the lymphoid organs (spleen and lymph nodes). These FRC are important for the initiation of immune responses to infections. The researchers found that widespread infection of the FRC caused a disruption of the function of these important stromal cells.

Last year a group of Emory scientists led by Rafi Ahmed, PhD, and graduate student Daniel Barber and their colleagues discovered in mice another way in which the immune reaction to chronic infections is blocked -- a pathway called PD-1 that blocked the response to the chronic strain of LCMV.

The current research was conducted by Scott N. Mueller, PhD, a postdoctoral fellow in the laboratory of Dr. Ahmed, a Georgia Research Alliance Eminent Scholar and director of the Emory Vaccine Center. The team also included scientists from the Emory Transplant Center and Emory School of Medicine, the University of California, San Francisco (UCSF), the University of California, Los Angeles (UCLA), Harvard Medical School and the Dana-Farber Cancer Institute.

The research team discovered that infection of FRC may involve the previously discovered PD-1 pathway. The major ligand (binding molecule) for PD-1, PD-L1, is upregulated on FRC after infection. The PD-1 pathway may inhibit interactions between CD8+ T cells and FRC, preventing destruction of the FRC architecture in the spleen. This may help the virus to remain in infected FRC and contribute to long-term viral persistence.

"This research helps explain how the T-cell response can be suppressed in chronic viral infections," says Dr. Mueller. "As we learn more about the intricate mechanisms involved we will be able to develop better treatments, and potentially preventive vaccines, for chronic infections such as those caused by HIV and hepatitis C viruses."

Source: Emory University

Explore further: Unidentified fever kills 13 in DR Congo in 10 days

add to favorites email to friend print save as pdf

Related Stories

Mexico acid leak leaves orange river, toxic water

16 hours ago

Ramona Yesenia stood in her town square with two empty jugs, waiting for water to replace the municipal supply contaminated by a chemical spill that turned Mexico's Sonora river orange.

Recommended for you

Nigeria confirms two new Ebola cases (Update)

2 hours ago

Two new cases of Ebola have emerged in Nigeria and, in an alarming development, they are outside the group of caregivers who treated an airline passenger who arrived with Ebola and died, Health Minister Onyebuchi ...

Senegal closes border as UN warns on Ebola flare-up

6 hours ago

Senegal has become the latest country to seal its border with a west African neighbour to ward off the deadly Ebola virus, as the new UN pointman on the epidemic said preparations must be made for a possible flare-up of the ...

Climate change could see dengue fever come to Europe

7 hours ago

Dengue fever could make headway in popular European holiday destinations if climate change continues on its predicted trajectory, according to research published in open access journal BMC Public Health.

American Ebola doc: 'I am thrilled to be alive'

15 hours ago

Calling it a "miraculous day," an American doctor infected with Ebola left his isolation unit and warmly hugged his doctors and nurses on Thursday, showing the world that he poses no public health threat ...

User comments : 0