Scientists learn structure of enzyme in unusual virus

Sep 17, 2007

Biologists have determined the three-dimensional structure of an unusual viral enzyme that is required in the assembly of new viruses.

The Paramecium bursaria chlorella virus infects a green alga called chlorella, transferring its DNA into host cells. Once inside the chlorella, the virus DNA makes an enzyme called glycosyltransferase, which is needed to produce structural proteins that are assembled to create the outer shells, or capsids, for new virus particles.

In contrast, many viruses commandeer the genes of host cells to make enzymes and proteins, said Ying Zhang, a postdoctoral researcher in the laboratory of Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

The three-dimensional structure of the complete infectious virus had been determined earlier by the same group of researchers and their colleagues. Now they have found the structure of a specific type of glycosyltransferase and also its complex with a molecule called UDP-glucose, which stands for uridine-5-diphosphate-glucose, along with positively charged manganese ions. The manganese ions are critical because they coordinate the binding of the UDP-glucose to the enzyme.

The findings are detailed in a research paper appearing in this month's issue of the journal Structure. The paper was written by Zhang; Purdue postdoctoral researcher Ye Xiang; James Van Etten, the William Allington Distinguished Professor of Plant Pathology at the University of Nebraska; and Rossmann.

Learning the fundamental mechanisms for how this glycosyltransferase works may later enable scientists to develop drugs that inhibit certain viral infections, Zhang said.

The glycosyltransferase apparently breaks a chemical bond between UDP and the glucose. The glucose is then attached to the roughly 5,000 copies of a protein that assembles to form the viral capsid that surrounds and protects the virus's DNA genome.

"The glucose may be helping to correctly fold the protein while it is being assembled into the capsid," Rossmann said.

In addition, the glucose on the capsid also may be involved in the initiation of the viral infection, he said.

The researchers used X-ray crystallography to determine the structure of the glycosyltransferase enzyme and earlier had used cryoelectron microscopy to determine the three-dimensional structure of the virus.

Source: Purdue University

Explore further: First metatranscriptome of bee gut finds 19 different bacterial phyla

add to favorites email to friend print save as pdf

Related Stories

Huge waves measured for first time in Arctic Ocean

5 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

Underwater elephants

5 hours ago

In the high-tech world of science, researchers sometimes need to get back to basics. UC Santa Barbara's Douglas McCauley did just that to study the impacts of the bumphead parrotfish (Bolbometopon muricatum) on cor ...

Recommended for you

'Killer sperm' prevents mating between worm species

7 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

10 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

11 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

11 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0