Quantum telecloning: Captain Kirk's clone and the eavesdropper

Feb 16, 2006

Imagine Captain Kirk being beamed back to the Starship Enterprise and two versions of the Star Trek hero arriving in the spacecraft's transporter room. It happened 40 years ago in an episode of the TV science fiction classic, and now scientists at the University of York and colleagues in Japan have managed something strikingly similar in the laboratory - though no starship commander was involved.

The first experimental demonstration of quantum telecloning has been achieved by scientists at the University of Tokyo, the Japan Science and Technology Agency, and the University of York. The work is reported in the latest issue of Physical Review Letters. Telecloning combines cloning (or copying) with teleportation (i.e., disembodied transport).

The scientists have succeeded in making the first remote copies of beams of laser light, by combining quantum cloning with quantum teleportation into a single experimental step. Telecloning is more efficient than any combination of teleportation and local cloning because it relies on a new form of quantum entanglement - multipartite entanglement.

Professor Sam Braunstein, of the Department of Computer Science at York, said: "Quantum mechanics allows us to do things which we previously thought were impossible. In 1998, I was involved in an experiment in America which was one of the first for quantum teleportation in which we transmitted a beam of light without it crossing the physical medium in between.

"This new experiment is an extension of that work. Whether it will change the world for individuals or is just of use to governments or big companies is hard to say. Any new protocol is like a new-born baby and it has to develop, but we know this one could be used to tap cryptographic channels.

"Quantum cryptographic protocols are so secure that they can not only discover tapping but also where and how much information is leaking out. Now, using telecloning, the identity and location of the eavesdropper can be concealed."

Telecloning and teleportation may no longer be theories, but we are still a long way from teleporting people.

Professor Braunstein said: "What we know is that it would be incredibly difficult and from the perspective of today's technology, a completely outrageous thing. But in 100 years, who knows?"

The article "Demonstration of quantum telecloning of optical coherent states" is scheduled for publication in the February 17 issue of the scientific journal Physical Review Letters. The full list of authors is: S.Koike, H.Takahashi, H.Yonezawa, N.Takei, Prof. S.L.Braunstein, T.Aoki and Prof. A.Furusawa.

Source: University of York

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.