Probing a rare material spin state

Sep 14, 2007

A team of international physicists that includes researchers from the National Institute of Standards and Technology has found experimental evidence of a highly sought-after type of arrangement of atomic magnetic moments, or spins, in a series of materials. Their work, one of the very few studies of this particular spin state, which has been postulated as a possible underlying mechanism for high-temperature superconductivity, may eventually serve as a test of current and future theoretical models of exotic spin states.

At the NIST Center for Neutron Research (NCNR) and the Hahn-Meitner Institute in Berlin, Germany, the scientists used intense beams of neutrons to probe a series of antiferromagnets, materials in which each spin—an intrinsic property of an atom that produces a tiny magnetic field called a magnetic “moment”—cancels another, giving the material a net magnetic field of zero.

The results, described in the Aug. 26 online edition of Nature Materials, revealed evidence of a rare and pporly understood “quantum paramagnetic” spin state, in which neighboring spins pair up to form “entangled spin singlets” that have an ordered pattern and that allow the material to weakly respond to an outside magnetic field—i.e., become paramagnetic.

The antiferromagnets used in this work are composed mainly of zinc and copper, and are distinguished by their proportions of each, with the number of copper ions determined by the number of zinc ions. At the atomic level, the material is formed of many repeating layers. The atoms of each layer are arranged into a structure known as a “kagome lattice,” a pattern of triangles laid point-to-point whose basic unit resembles a six-point star.

Physicists have been studying antiferromagnets with kagome structures over the last 20 years because they suspected these materials harbored interesting spin structures. But good model systems, like the zinc/copper compounds used by this group, had not been identified.

At the NCNR, the researchers determined how varying concentrations of zinc and copper and varying temperatures affected fluctuations in the way the spins are arranged in these materials. Using a neutron spectrometer at the Hahn-Meitner Institute, they also investigated the effect of external magnetic fields of varying strengths. The group uncovered several magnetic phases in addition to the quantum paramagnetic state and were able to construct a complete phase diagram as a function of the zinc concentration and temperature. They are planning further experimental and theoretical studies to learn more about the kagome system.

Source: National Institute of Standards and Technology

Explore further: Technique simplifies the creation of high-tech crystals

add to favorites email to friend print save as pdf

Related Stories

A new multi-bit 'spin' for MRAM storage

Jul 22, 2014

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

Fermi finds a 'transformer' pulsar

19 hours ago

( —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

Working group explores the 'frustration' of spin glasses

Jul 18, 2014

Spin glasses are frustrating. Although the ideas have been around for decades and form the foundation of countless complex systems models, they have nonetheless resisted researchers' efforts to understand exactly how they ...

Recommended for you

IHEP in China has ambitions for Higgs factory

11 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

12 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

13 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

17 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0