Galaxy 'hunting' made easy

Sep 14, 2007
Chasing 'Hidden' Galaxies
Artist's impression showing a galaxy located between an observer on Earth and a background quasar that acts as a beacon. The light that travels from the quasar is intercepted by the foreground galaxy on its sightline, carrying out the galaxy's signature all the way to the observer. The sketch shows a side-on view of the system. The inset shows a face-on view of it, the same view captured (albeit with less detail) by the images taken with the SINFONI instrument on ESO's Very Large Telescope. Credit: ESO/VLT

Astronomers using ESO's Very Large Telescope have discovered in a single pass about a dozen otherwise invisible galaxies halfway across the Universe. The discovery, based on a technique that exploits a first-class instrument, represents a major breakthrough in the field of galaxy 'hunting'.

The team of astronomers led by Nicolas Bouché have used quasars to find these galaxies. Quasars are very distant objects of extreme brilliance, which are used as cosmic beacons that reveal galaxies lying between the quasar and us. The galaxy's presence is revealed by a 'dip' in the spectrum of the quasar - caused by the absorption of light at a specific wavelength.

The team used huge catalogues of quasars, the so-called SDSS and 2QZ catalogues, to select quasars with dips. The next step was then to observe the patches of the sky around these quasars in search for the foreground galaxies from the time the Universe was about 6 billion years old, almost half of its current age.

"The difficulty in actually spotting and seeing these galaxies stems from the fact that the glare of the quasar is too strong compared to the dim light of the galaxy," says Bouché.

This is where observations taken with SINFONI on ESO's VLT made the difference. SINFONI is an infrared 'integral field spectrometer' that simultaneously delivers very sharp images and highly resolved colour information (spectra) of an object on the sky.

With this special technique, which untangles the light of the galaxy from the quasar light, the team detected 14 galaxies out of the 20 pre-selected quasar patches of sky, a hefty 70% success rate.

"This high detection rate alone is a very exciting result," says Bouché. "But, these are not just ordinary galaxies: they are most notable ones, actively forming a lot of new stars and qualifying as 'starburst galaxies'."

"We discovered that the galaxies located near the quasar sightlines are forming stars at a prodigious rate, equivalent to 20 suns per year," adds team member Celine Péroux.

These findings represent a big leap forward in the field, setting the stage for a very promising era of galaxy 'hunting'.

The astronomers now plan to use SINFONI to study in more detail each of these galaxies, by measuring their internal motions.

Source: ESO

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

add to favorites email to friend print save as pdf

Related Stories

Mysterious quasar sequence explained

Sep 10, 2014

Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous beacons in the sky across the entire electromagnetic spectrum by rapidly accreting ...

DRAGNs in the sky

Sep 09, 2014

A radio galaxy is a galaxy that emits large amounts of radio waves. They were first discovered in the 1950s, but it wasn't until the 1960s when a technique known as aperture synthesis was developed that we ...

Variables of nature

Sep 05, 2014

Within physics there are certain physical quantities that play a central role. These are things such as the mass of an electron, or the speed of light, or the universal constant of gravity. We aren't sure ...

What lit up the universe?

Aug 27, 2014

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

What is Nothing?

Aug 22, 2014

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

Recommended for you

The Great Cold Spot in the cosmic microwave background

10 hours ago

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 0