New technique can be breakthrough for early cancer diagnosis

Sep 12, 2007

Early detection of disease is often critical to how successful treatment can be. Therefore, the development of new methods of diagnosis is a hot research field, where every small step is of great importance. In an article in the latest issue of Molecular & Cellular Proteomics, Uppsala University researchers describe a technique that the journal regards as especially interesting.

Proteins build up the body’s cells and tissues, and our knowledge of the human genome also entails that today’s scientists are aware of all of the proteins that our body can produce. It is known that many morbid conditions can be linked to changes in proteins, so it is important to enhance our knowledge of what proteins bind to each other, how they work together, and how processes are impacted by various disturbances.

In 2006 Ola Söderberg and his colleagues at the Department of Genetics and Pathology devised a new technique, in situ PLA (in situ proximity ligation assay), that could detect communication between proteins in cells. These researchers have now refined the method and can now see how proteins undergo change inside a cell.

“The method provides a better potential to truly understand how proteins function in the cell and can show what is wrong with a sick cell, as in cancer, for instance. The refined method has the potential to revolutionize cancer diagnostics, so there has been a great deal of interest in the method from the research community,” says Ola Söderberg.

The technique is more sensitive and more reliable than other available techniques in molecular diagnostics, and it has already started to be sold by the Uppsala company Olink, so there are high hopes that it will soon be used in health care.

Source: Uppsala University

Explore further: A novel therapy for sepsis?

add to favorites email to friend print save as pdf

Related Stories

Measuring modified protein structures

Sep 14, 2014

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

Seeing protein synthesis in the field

Sep 08, 2014

(Phys.org) —Caltech researchers have developed a novel way to visualize proteins generated by microorganisms in their natural environment—including the murky waters of Caltech's lily pond, as in this ...

Scientists map protein in living bacterial cells

Sep 04, 2014

(Phys.org) —Scientists have for the first time mapped the atomic structure of a protein within a living cell. The technique, which peered into cells with an X-ray laser, could allow scientists to explore ...

Recommended for you

A novel therapy for sepsis?

8 hours ago

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

Cellular protein may be key to longevity

Sep 15, 2014

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

Sep 15, 2014

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

User comments : 0