Taxol bristle ball: a wrench in the works for cancer

Sep 12, 2007
TaxolBall
Using gold nanoparticles, Rice chemists have created tiny spheres that literally bristle with molecules of the anti-cancer drug Taxol. Credit: Eugene Zubarev/Rice University

Rice University chemists have discovered a way to load dozens of molecules of the anti-cancer drug paclitaxel onto tiny gold spheres. The result is a tiny ball, many times smaller than a living cell that literally bristles with the drug.

Paclitaxel, which is sold under the brand name Taxol®, prevents cancer cells from dividing by jamming their inner works.

"Paclitaxel is one of the most effective anti-cancer drugs, and many researchers are exploring how to deliver much more of the drug directly to cancer cells," said lead researcher Eugene Zubarev, the Norman Hackerman-Welch Young Investigator and assistant professor of chemistry at Rice. "We looked for an approach that would clear the major hurdles people have encountered -- solubility, drug efficacy, bioavailability and uniform dispersion -- and our initial results look very promising."

The research is available online and will appear in the Sept. 19 issue of the Journal of the American Chemical Society.

First isolated from the bark of the yew tree in 1967, paclitaxel is one of the most widely prescribed chemotherapy drugs in use today. The drug is used to treat breast, ovarian and other cancers.

Paclitaxel works by attaching itself to structural supports called microtubules, which form the framework inside living cells. In order to divide, cells must break down their internal framework, and paclitaxel stops this process by locking the support into place.

Since cancer cells divide more rapidly than healthy cells, paclitaxel is very effective at slowing the growth of tumors in some patients. However, one problem with using paclitaxel as a general inhibitor of cell division is that it works on all cells, including healthy cells that tend to divide rapidly. This is why patients undergoing chemotherapy sometimes suffer side effects like hair loss and suppressed immune function.

"Ideally, we'd like to deliver more of the drug directly to the cancer cells and reduce the side effects of chemotherapy," Zubarev said. "In addition, we'd like to improve the effectiveness of the drug, perhaps by increasing its ability to stay bound to microtubules within the cell."

Zubarev's new delivery system centers on a tiny ball of gold that's barely wider than a strand of DNA. Finding a chemical process to attach a uniform number of paclitaxel molecules to the ball -- without chemically altering the drugs -- was not easy. Only a specific region of the drug binds with microtubules. This region of the drugs fits neatly into the cell's support structure, like a chemical "key" fitting into a lock. Zubarev and graduate student Jacob Gibson knew they had to find a way to make sure the drug's key was located on the face of each bristle.

Zubarev and Gibson first designed a chemical "wrapper" to shroud the key, protecting it from the chemical reactions they needed to perform to create the ball. Using the wrapped version of the drug, they undertook a series of reactions to attach the drug to linker molecules that were, in turn, attached to the ball. In the final step of the reaction, they dissolved the wrapper, restoring the key.

"We are already working on follow-up studies to determine the potency of the paclitaxel-loaded nanoparticles," Zubarev said. "Since each ball is loaded with a uniform number of drug molecules, we expect it will be relatively easy to compare the effectiveness of the nanoparticles with the effectiveness of generally administered paclitaxel."

Citation: J. Am. Chem. Soc. 2007, vol. 129, pgs.11653-11661

Source: Rice University

Explore further: Ice cream goes Southern, okra extracts may increase shelf-life

add to favorites email to friend print save as pdf

Related Stories

A key component of cell division comes to light

Jun 30, 2014

The division of a cell in two requires the assembly of the mitotic spindle, an extremely complex structure, which is the result of the coordinated action of a multitude of proteins and a finely tuned balance ...

Hot nanoparticles for cancer treatments

Mar 24, 2014

Nanoparticles have a great deal of potential in medicine: for diagnostics, as a vehicle for active substances or a tool to kill off tumours using heat. ETH Zurich researchers have now developed particles ...

Video of virus-sized particle trying to enter cell

Feb 25, 2014

Tiny and swift, viruses are hard to capture on video. Now researchers at Princeton University have achieved an unprecedented look at a virus-like particle as it tries to break into and infect a cell. The technique they developed ...

Robots may receive urine-powered artificial 'hearts'

Nov 27, 2013

(Phys.org) —It's a first: researchers have built the first artificial-heart-like pump that is powered by microbial fuel cells fed on human urine. But instead of being used as a prosthetic device for human ...

Recommended for you

The fluorescent fingerprint of plastics

12 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

17 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

17 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

18 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0