Scientists explain how insulin secreting cells maintain their glucose sensitivity

Sep 05, 2007

Scientists at the leading Swedish medical university Karolinska Institutet have now disclosed the mystery how the insulin-secreting cells maintain an appropriate number of ATP sensing ion channel proteins on their surface. This mechanism, which is described in the latest number of Cell Metabolism, explains how the human body can keep the blood glucose concentration within the normal range and thereby avoid the development of diabetes.

Blood sugar absorbed from food has to timely enter muscles as energy supply as well as the liver and fat tissue for energy storage. Otherwise, diabetes occurs. Such glucose transport is precisely controlled by insulin, the body’s only hormone capable of lowering blood sugar. This hormone is released from insulin-secreting cells in the pancreas.

The ion channel proteins that are regulated by ATP and that transport potassium ions (KATP channels) are situated on the surface of the insulin-secreting cells to sense blood sugar and control sugar-stimulated insulin secretion. However, it has been a long-standing mystery how the insulin-secreting cells keep an appropriate number of KATP channels on their surface. Scientists at the the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, have now disclosed a new traffic route whereby sugar promotes the insulin secretion controller KATP channel to march to its post.

Dogmatically, only two routes were believed to operate in insulin-secreting cells to deliver the macromolecules newly manufactured or modified inside cells to the cell surface where they

release or reside to function. One is referred to as a regulated insulin secretory pathway. The other is termed a constitutive pathway to renew cell surface lipids and proteins including KATP channels.

“We have now found that the newly manufactured KATP channels in insulin-secreting cells reside in a non-insulin-containing structure, which contains the regulated secretory granule marker chromogranin,” says Per-Olof Berggren. “Such a structure moves to the cell surface subsequent to elevation of sugar concentration in a Ca2+- and protein kinase A-dependent fashion.”

According to Professor Berggren the discovery is very important. This entirely new traffic route endows insulin-secreting cells with an efficient way to maintain an appropriate number of KATP channels on their surface and thereby being able to adequately keep the blood glucose concentration within the normal range thus avoiding the development of diabetes.

Source: Karolinska Institutet

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Android gains in US, basic phones almost extinct

4 hours ago

The Google Android platform grabbed the majority of mobile phones in the US market in early 2014, as consumers all but abandoned non-smartphone handsets, a survey showed Friday.

SpaceX launches supplies to space station (Update)

5 hours ago

The SpaceX company returned to orbit Friday, launching fresh supplies to the International Space Station after more than a month's delay and setting the stage for urgent spacewalking repairs.

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.