Hot Ice to Lubricate Artificial Joints

Sep 05, 2007
Hot Ice to Lubricate Artificial Joints
Water molecules (red and white) form orderly layers of ice on top of a layer of diamond (green) treated with sodium atoms (blue) in a simulation showing that such ice layers could persist well above body temperatures. Potentially, high temperature ice could make diamond coatings more suitable for implanted joints, heart valves, and other medical devices. Credit: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E, August 2007

A recent simulation has shown that thin layers of ice could persist on specially treated diamond coatings at temperatures well above body temperature, which could make ice-coated-diamond films an ideal coating for artificial heart valves, joint replacements, and wear-resistant prosthetics.

Physicists Alexander D. Wissner-Gross and Efthimios Kaxiras of Harvard modeled water ice on top of a diamond surface coated with sodium ions. They found that ice layers should persist on the treated diamond up to temperatures of 108 degrees Fahrenheit (42 Celsius), and in some circumstances could remain frozen beyond the boiling point of water.

Because of the gem's strength and other unusual characteristics, artificially grown diamond films are among the most promising candidates for applications ranging from medical implants to solar cells. Adding a layer of high-temperature ice could make the diamond even more suitable for medical devices by reducing its abrasiveness and inhibiting protein build-up.

Among other promising applications, the physicists believe that the ice layer could enhance the efficiency of diamond film-based solar collectors, while being much more environmentally friendly than lithium-ion batteries and other energy storage devices.

A short film that the researchers made from of some of their simulations was a finalist in the 2007 Materials Research Film Festival (www.alexwg.org/DiamondIce.mov). The work also earned Wissner-Gross the 2007 Dan David Prize Scholarship from Tel Aviv University and the 2007 Graduate Student Silver Award from the Materials Research Society.

Citation: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E (August 2007)

Source: American Physical Society

Explore further: Two new baryon particles discovered in agreement with York U prediction

add to favorites email to friend print save as pdf

Related Stories

Researchers calculate 'hidden' emissions in traded meat

7 hours ago

An international team of researchers has, for the first time, estimated the amount of methane (CH4) and nitrous oxide (N2O) that countries release into the atmosphere when producing meat from livestock, ...

Ex-DHS official warns of more USIS breach victims

9 hours ago

A former senior Department of Homeland Security official says the hacking incident that compromised the private files of more than 25,000 DHS workers also exposed data belonging to numerous workers at other federal agencies.

New Horizons set to wake up for Pluto encounter

10 hours ago

(Phys.org) —NASA's New Horizons spacecraft comes out of hibernation for the last time on Dec. 6. Between now and then, while the Pluto-bound probe enjoys three more weeks of electronic slumber, work on ...

Recommended for you

New technique allows ultrasound to penetrate bone, metal

9 hours ago

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

Taming the Boltzmann equation

13 hours ago

Physicists at Ludwig Maximilian University of Munich, Germany, have developed a new algorithm that is capable of solving the Boltzmann equation for systems of self-propelled particles. The new method also ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.