Hot Ice to Lubricate Artificial Joints

Sep 05, 2007
Hot Ice to Lubricate Artificial Joints
Water molecules (red and white) form orderly layers of ice on top of a layer of diamond (green) treated with sodium atoms (blue) in a simulation showing that such ice layers could persist well above body temperatures. Potentially, high temperature ice could make diamond coatings more suitable for implanted joints, heart valves, and other medical devices. Credit: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E, August 2007

A recent simulation has shown that thin layers of ice could persist on specially treated diamond coatings at temperatures well above body temperature, which could make ice-coated-diamond films an ideal coating for artificial heart valves, joint replacements, and wear-resistant prosthetics.

Physicists Alexander D. Wissner-Gross and Efthimios Kaxiras of Harvard modeled water ice on top of a diamond surface coated with sodium ions. They found that ice layers should persist on the treated diamond up to temperatures of 108 degrees Fahrenheit (42 Celsius), and in some circumstances could remain frozen beyond the boiling point of water.

Because of the gem's strength and other unusual characteristics, artificially grown diamond films are among the most promising candidates for applications ranging from medical implants to solar cells. Adding a layer of high-temperature ice could make the diamond even more suitable for medical devices by reducing its abrasiveness and inhibiting protein build-up.

Among other promising applications, the physicists believe that the ice layer could enhance the efficiency of diamond film-based solar collectors, while being much more environmentally friendly than lithium-ion batteries and other energy storage devices.

A short film that the researchers made from of some of their simulations was a finalist in the 2007 Materials Research Film Festival (www.alexwg.org/DiamondIce.mov). The work also earned Wissner-Gross the 2007 Dan David Prize Scholarship from Tel Aviv University and the 2007 Graduate Student Silver Award from the Materials Research Society.

Citation: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E (August 2007)

Source: American Physical Society

Explore further: Thinner capsules yield faster implosions

Related Stories

Thinner capsules yield faster implosions

29 minutes ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Why be creative on social media?

29 minutes ago

There are five motivators for creating novel content online, whether blog posts, shared news stories, images, photos, songs, videos or any of the other digital artifacts users of social media and social networking sites share ...

Recommended for you

Direct visualization of magnetoelectric domains

2 hours ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

4 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.