Hot Ice to Lubricate Artificial Joints

Sep 05, 2007
Hot Ice to Lubricate Artificial Joints
Water molecules (red and white) form orderly layers of ice on top of a layer of diamond (green) treated with sodium atoms (blue) in a simulation showing that such ice layers could persist well above body temperatures. Potentially, high temperature ice could make diamond coatings more suitable for implanted joints, heart valves, and other medical devices. Credit: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E, August 2007

A recent simulation has shown that thin layers of ice could persist on specially treated diamond coatings at temperatures well above body temperature, which could make ice-coated-diamond films an ideal coating for artificial heart valves, joint replacements, and wear-resistant prosthetics.

Physicists Alexander D. Wissner-Gross and Efthimios Kaxiras of Harvard modeled water ice on top of a diamond surface coated with sodium ions. They found that ice layers should persist on the treated diamond up to temperatures of 108 degrees Fahrenheit (42 Celsius), and in some circumstances could remain frozen beyond the boiling point of water.

Because of the gem's strength and other unusual characteristics, artificially grown diamond films are among the most promising candidates for applications ranging from medical implants to solar cells. Adding a layer of high-temperature ice could make the diamond even more suitable for medical devices by reducing its abrasiveness and inhibiting protein build-up.

Among other promising applications, the physicists believe that the ice layer could enhance the efficiency of diamond film-based solar collectors, while being much more environmentally friendly than lithium-ion batteries and other energy storage devices.

A short film that the researchers made from of some of their simulations was a finalist in the 2007 Materials Research Film Festival (www.alexwg.org/DiamondIce.mov). The work also earned Wissner-Gross the 2007 Dan David Prize Scholarship from Tel Aviv University and the 2007 Graduate Student Silver Award from the Materials Research Society.

Citation: Alexander D. Wissner-Gross and Efthimios Kaxiras, Physical Review E (August 2007)

Source: American Physical Society

Explore further: Uncovering the forbidden side of molecules

add to favorites email to friend print save as pdf

Related Stories

Photo-initiated charge separation in nanobiohybrid complex

10 minutes ago

In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature ...

Victoria team defend title with speedy robot

17 minutes ago

A team from Victoria's School of Engineering and Computer Science, led by Robby Lopez, beat 15 other teams from Australian and New Zealand universities to take top honours in the 2013 competition with its ...

Different watering regimes boost crop yields

20 minutes ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

Monitoring heavy metals using mussels

30 minutes ago

A research team in Malaysia has concluded that caged mussels are useful for monitoring heavy metal contamination in coastal waters in the Strait of Johore. Initial results indicate more pollution in the eastern ...

Recommended for you

Uncovering the forbidden side of molecules

19 hours ago

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives ...

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 0