Specific brain protein required for nerve cell connections to form and function

Sep 05, 2007

Neurons, or nerve cells, communicate with each other through contact points called synapses. When these connections are damaged, communication breaks down, causing the messages that would normally help our feet push our bike pedals or our mind locate our car keys to fall short.

Now scientists at the University of North Carolina at Chapel Hill School of Medicine have shown that a protein called neurexin is required for these nerve cell connections to form and function correctly.

The discovery, made in Drosophila fruit flies may lead to advances in understanding autism spectrum disorders, as recently, human neurexins have been identified as a genetic risk factor for autism.

"This finding now gives us the opportunity to see what job neurexin performs within the cell, so that we can gain a better insight into what can go wrong in the nervous system when neurexin function is lost” said Dr. Manzoor Bhat, associate professor of cell and molecular physiology in the UNC School of Medicine and senior author of the study.

The study, published online September 6, 2007, in the journal Neuron, is the first to successfully demonstrate in a Drosophila model the consequences that mutating this important protein may have on synapses.

The research was supported in part by grants from the National Institute of General Medical Sciences, National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health and funds from the state of North Carolina.

During the last decade, scientists have learned that neurexins are integral to the transmission of chemical signals within the nervous system. Neurexins interact with binding partners called neuroligins to link neighboring nerve cells together so that signals can be sent and received correctly.

Previous attempts to study these proteins in animal models have been challenging. In vertebrates such as mice, three different genes code for the production of certain neurexin proteins. Deleting just one of these genes causes no adverse effects in mouse models, while removing all three is fatal. But fruit flies have only one gene for neurexin, and when Bhat and colleagues deleted the gene, the flies survived — barely.

"Knocking out neurexin basically resulted in a fly with defective nervous system” said Bhat, also a member of the UNC Neuroscience Center and the UNC Neurodevelopmental Disorders Research Center.

First of all, the mutated fruit flies had trouble moving around. When the researchers examined the synapses in these flies, they found that half of them were gone. The synapses that remained were deformed, causing them to send out less chemical signals. The researchers, led by Jingjun Li, a graduate student in neurobiology in the UNC School of Medicine, concluded that neurexin is required for the growth of synapses, for the maintenance of their structure and for their function.

Currently, Bhat and other scientists are working to identify the proteins that neurexin binds to, how they interact, and what sequence of events ultimately results in the organization of synapses within nerve cells. The hope is that such studies in Drosophila will one day clarify the role neurexin plays in learning and memory, ultimately leading to a better understanding of how defects in this protein can lead to human disorders such as autism, Bhat said.

Source: University of North Carolina at Chapel Hill

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Spacewalking astronauts finish extensive, trick cable job

2 hours ago

(AP)—Spacewalking astronauts successfully completed a three-day cable job outside the International Space Station on Sunday, routing several-hundred feet of power and data lines for new crew capsules commissioned ...

IOC defends Rio legacy amid green protests

4 hours ago

Ecological protests on Saturday dogged the final day of an International Olympic Committee executive board meeting in Rio as green campaigners slated the choice of a nature reserve to hold the golf event ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.