Genetic information makes it safer to prescribe common blood thinner

Sep 04, 2007

Doctors prescribing blood thinners have had to go through a lengthy trial-and-error process to arrive at the optimal dose for their patients. But now the process can be faster and safer, thanks to research conducted at Washington University School of Medicine in St. Louis.

Researchers there, along with colleagues at Saint Louis University and St. Louis College of Pharmacy, have developed an improved dosing formula for the widely prescribed anticoagulant warfarin (Coumadin?) that takes into account variations in two key genes. This approach is an important example of the trend toward personalized medicine.

With the new dosing formula, doctors can more quickly and accurately estimate the appropriate dose of warfarin, an anticoagulant that is notoriously challenging to use because so many factors affect its activity. Washington University investigator Brian F. Gage, M.D., medical director of Barnes-Jewish Hospital's Blood Thinner Clinic, and colleagues report their findings in the Sept. 1 issue of the journal Blood.

Their report follows closely upon the U.S. Food and Drug Administration's August 16, 2007 announcement of updated labeling for warfarin that includes information on the role of the two genes. At the time of the announcement, the director of the FDA's Office of Clinical Pharmacology, Larry Lesko, Ph.D., called for studies to establish proper dosing for patients with specific variations of these genes. The current study is the first to address that goal.

"We already knew these genes affected warfarin dosing, but we didn't know how to use that information clinically," says Gage, also associate professor of medicine at the School of Medicine. "But with this study, we've established a simple way to combine these genetic factors with clinical factors in a dosing algorithm."

The researchers have made the new algorithm publicly available at www.warfarindosing.org. The Web site allows physicians to input patient information and receive dosing recommendations.

Doctors prescribe warfarin to prevent blood clots or reduce the risk of stroke in patients with atrial fibrillation, artificial heart valves, deep venous thrombosis and pulmonary emboli. It is also helpful in preventing blood clot formation after certain orthopedic surgeries such as knee or hip replacements.

Until now, doctors have had to use trial and error, repeatedly changing the dose and retesting clotting time to arrive at the warfarin dose that works for each patient. During this adjustment period, which may be a matter of two to three weeks, patients are in danger of hemorrhaging when the dose is too high or blood clots and strokes when the dose is too low.

The new formula developed by Gage and colleagues calculates the proper warfarin dose using some physical and health attributes but also factors in individual variation in the two genes VKORC1 and CYP2C9. Past research showed that certain variations in these genes can affect a person's sensitivity or resistance to warfarin and how fast a person's body breaks down the drug.

The new dosing calculation better predicts each patient's response to warfarin and significantly cuts the number of dosage changes, shortening the time needed to achieve a therapeutic dose and potentially increasing patient safety.

Gage and colleagues also adapted their approach to accommodate real-world delays in gene testing, which may take two or three days to complete. Using the new method, physicians and pharmacists can use the Web tool to estimate an initial dose based on clinical factors and once the gene tests are available, revise the initial estimate to accommodate the influence of the genetic factors.

"That approach makes our method practical," Gage says. "Physicians don't have to delay initiation of therapy while they wait for genotype results."

The dosing algorithm was established in a study of patients undergoing knee or hip replacement surgery, and Gage and colleagues are now testing it on patients with other conditions to confirm its general applicability.

Citation: Millican E, Jacobsen-Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, Grice G, Clohisy JC, Barrack RL, Burnett RSJ, Voorka D, Gatchel S, Tiemeier A, Gage BF. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 2007 Sep 1;110(5):1511-5.

Source: Washington University in St. Louis

Explore further: Key element of CPR missing from guidelines

add to favorites email to friend print save as pdf

Related Stories

Study: Gene testing helps get warfarin dose right

Mar 16, 2010

(AP) -- Doctors are reporting an exciting win for gene testing and personalized medicine: Checking patients' DNA before starting them on a popular blood thinner helps get the tricky dose right and keep them out of the hospital.

Right warfarin dose determined by 3 genes

Mar 20, 2009

Researchers at Uppsala University, together with colleagues at the Karolinska Institute and the Sanger Institute, have now found all the genes the determine the dosage of the blood-thinning drug warfarin. The findings are ...

Toxic toll of rat poison on birds revealed

May 04, 2011

Rats might not be everyone's cup of tea, but you might want to think twice about reaching for the rat poison next time you come across one. While rat poison is brilliant at killing rats, it also spells danger ...

Recommended for you

Exploring 3-D printing to make organs for transplants

14 hours ago

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients ...

High frequency of potential entrapment gaps in hospital beds

15 hours ago

A survey of beds within a large teaching hospital in Ireland has shown than many of them did not comply with dimensional standards put in place to minimise the risk of entrapment. The report, published online in the journal ...

Key element of CPR missing from guidelines

Jul 29, 2014

Removing the head tilt/chin lift component of rescue breaths from the latest cardiopulmonary resuscitation (CPR) guidelines could be a mistake, according to Queen's University professor Anthony Ho.

Burnout impacts transplant surgeons (w/ Video)

Jul 28, 2014

Despite saving thousands of lives yearly, nearly half of organ transplant surgeons report a low sense of personal accomplishment and 40% feel emotionally exhausted, according to a new national study on transplant surgeon ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) Nov 30, 2007
The INR test can be done in a few minutes. This determines warfarin doses.