Glass Semiconductor Softens With Low-Power Laser, Then Re-Hardens

Sep 07, 2004

Scientists at Ohio State University have found that a special type of glass that is finding use in the electronics industry softens when exposed to very low-level laser light, and hardens back into its original condition when the light is switched off. The discovery -- made by accident as physicists were trying to study properties of the material -- may one day enable new uses for the glass.

Ratnasingham Sooryakumar said that he and former doctoral student Jared Gump thought they were working with a bad batch of germanium-selenium glass when Gump was testing the material’s hardness in the laboratory and couldn’t reproduce his results.

“Every day he got a different result,” recalled Sooryakumar, a professor of physics at Ohio State. “It took us a while to realize that the material was fine, it was just very sensitive to light.”

They finally traced their strange results to the very low-power laser light that they were shining on the glass. Whether the laser was set to exactly the same power every time shouldn’t have affected the experiment, but it did. The higher the laser power, the softer the glass. In fact, with the laser set to a mere 6 milliwatts –- six thousandths of a Watt -- the material became 50 percent softer than usual.

“Normally, you’d have to almost melt the glass to get it that soft, but here we were doing it with a light source that was essentially a laser pointer, and with no heat at all,” said Sooryakumar. “And what’s really important is that the whole effect is reversible.”

In the journal Physical Review Letters, the physicists reported that the glass always hardened back into its original condition. Even the latticework of atoms that made up its structure appeared unchanged afterward.

Sooryakumar and Gump co-authored the paper with Ilya Finkler, a former undergraduate student majoring in physics and mathematics, and Hua Xia, a former postdoctoral associate, both of Ohio State; Wayne Bresser, an assistant professor of physics at Northern Kentucky University; and Punit Boolchand, professor of electrical and computer engineering and computer science at the University of Cincinnati. Gump is now a scientist at the Naval Surface Warfare Center in Indian Head, MD, Finkler is a graduate student studying physics at Harvard University, and Xia is an engineer at General Electric Corp.

The glass is part of a family of glass semiconductors that are often used in electronics for DVDs and information storage technologies.

Germanium is hard and selenium soft. A combination of 80 percent selenium and 20 percent germanium is the “magic formula” where the material is neither too hard nor too soft, and well suited for forming a glass. Scientists call this point the rigidity transition.

Scientists are very interested in studying why the 80-20 ratio works, and what happens to the mechanical strength of the glass during the rigidity transition. To answer those questions, Sooryakumar and his colleagues tried to examine the hardness of the material in a range of selenium-germanium combinations around the transition point.

One way to determine the hardness of a material is to measure the speed of sound waves traveling through it; sound waves travel faster through harder materials. The physicists bounced a low-powered red laser beam off the sound waves to measure the speed –- a technique similar to how radar detects the speed of a moving car. The laser beam was only about as wide as a human hair, and used about as much power as a laser pointer.

That’s when they noticed the softening effect.

“It was as if the radar beam was influencing the speed of the car,” Sooryakumar said.

For compositions closest to the transition point, the effect was greatest: the material softened by 50 percent, from a hardness of 26 to 13 gigapascals as the laser power increased from 2 to 6 milliwatts. Hardness is a measure of how much pressure a material can withstand, and diamond rates at 100 gigapascals.(A gigapascal is roughly 10,000 times the pressure of earth’s atmosphere at sea level.)

Though the physicists don’t yet have a complete picture of why the material softened, Sooryakumar suspects that the answer has to do with the nature of the rigidity transition itself. Stiff materials normally carry a certain amount of stress in them, because the stacked molecules support each other like steel girders in a building. The transition point is special, Sooryakumar noted, because the molecules are arranged in just the right way to lower stress on the structure to a minimum.

Here’s why the physicists think the glass softened: When particles of light, called photons, hit the glass, they knocked some of the electrons that connect molecules in the latticework out of place. Such a change in bonding occurs most easily under conditions of minimum stress. With fewer supports holding up the structure, the glass became less stiff. Then, when the light was switched off, the electrons swung back into position, and the glass became stiff again.

Sooryakumar speculated that these types of glasses could have potential applications in re-writable computer memory. But right now, he and his colleagues are probing further to understand the rigidity transition and the remarkable response to light at this composition. They want to study what happens if the material is exposed to laser light of different color and higher power, and test different glasses besides selenium-germanium.

Source: Ohio State University

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

JILA's short, flexible, reusable AFM probe

Apr 09, 2014

(Phys.org) —JILA researchers have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. ...

Ultrabright lasers help switch single photons

Mar 31, 2014

(Phys.org) —In the search for a single photon source, researchers in Australia and France have achieved a major step towards a turn-key source of individual, precisely tailored photons from an integrated ...

Unavoidable disorder used to build nanolaser

Mar 23, 2014

Researchers the world round are working to develop optical chips, where light can be controlled with nanostructures. These could be used for future circuits based on light (photons) instead of electron - ...

New use for an old 'trouble maker'

Mar 21, 2014

(Phys.org) —A 'trouble maker' from a bygone method of glass production could find a new use as an optical diffuser in medical laser treatments, communications systems and household lighting.

Recommended for you

CERN: World-record current in a superconductor

20 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.