Mirrors could be a key to quantum computing

Aug 31, 2007 By Miranda Marquit feature

“We want to push the envelope,” Pierre Meystre tells PhysOrg.com. “We are trying to figure out how big an object can be and still be measured quantum mechanically.”

The idea, he says, is to get a better idea of where the boundary between quantum mechanics and classical mechanics exists. “Quantum mechanics was invented to deal with atoms and molecules,” Meystre continues, “but the idea is to apply the concepts to bigger and bigger systems until we see where the rules for quantum mechanics aren’t needed and we see classical mechanics.”

In order to study this subject, Meystre directed his post-doc student Mishkat Bhattacharya to try and create a model for cooling a mirror to its quantum mechanical ground state. Instead of using two mirrors, as is regular practice, Meystre directed Bhattacharya to use three mirrors. The University of Arizona theorists report the results of this modeling in Physical Review Letters. Their piece is titled, “Trapping and Cooling a Mirror to Its Quantum Mechanical Ground State.”

“There are many advantages to using three mirrors rather than two,” explains Bhattacharya. “With two mirrors, you can only get the irradiation from one side. Three mirrors allow you to set it up so that the middle mirror, the one we are cooling, gets the trapping force from both dies.”

Another advantage, Bhattacharya says, is that three mirrors helps resolve one of the conflicting technical demands on such systems. “The mirror needs to be small to be brought to its quantum mechanical ground state, but it needs to be big for practical mechanical use.” Three mirrors allow a setup in which the two mirrors on the end can be larger, while the middle mirror is properly small.

Bhattacharya also explains that another way to cool a mirror is to make it stiff, to stop its oscillations. With careful calculations, it is possible to use the two end mirrors to reduce the oscillations of the middle mirror. “What we have is a system that traps and cools the mirror two ways. With the laser radiation we can take the energy away, or we can stop the oscillations.”

Beyond the interest in the theoretical sense, Meystre and Bhattacharya point out that they have practical uses in mind for their system. “We hope to be able to use very cold mirrors as sensors,” says Meystre. “While the behavior of quantum mechanics is interesting from a curiosity standpoint, we can also see practical uses for this technique of mirror cooling.”

Beyond more sensitive sensors and the ability to detect and control condensate properties, Bhattacharya sees potential in one of the more popular aims of modern quantum sciences: information processing. “It is much easier to handle mirrors than to pinpoint where an atom or molecule is, and then try to manipulate it,” he points out. “This could lead to an efficient quantum computer.”

While Meystre and Bhattacharya point out that this has been done through modeling only, they also emphasize that a proof of principle has already been done by an unrelated group (who hadn’t read Meystre and Bhattacharya’s research) and available on the Los Alamos server (xxx.lanl.gov/abs/0707.1724). Additionally, Meystre and Bhattacharya believe that there is sufficient technology to establish experimental parameters for the system now.

“The uses for this mirror trapping and cooling system are going to be very exciting,” Bhattacharya insists. “For practical technology in general, and in the field of quantum physics, we have modeled something very useful.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

What happens when a quantum dot looks in a mirror?

Mar 19, 2015

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the ...

Quantum mechanic frequency filter for atomic clocks

Mar 09, 2015

Atomic clocks are the most accurate clocks in the world. In an atomic clock, electrons jumping from one orbit to another decides the clock's frequency. To get the electrons to jump, researchers shine light ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.