Dispelling the myth of bipolar glaciation 41 million years ago

Aug 30, 2007

Large continental ice sheets did not exist in both hemispheres around 41 million years ago during the warmer-than modern conditions of the time.

This is the finding of scientists from the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton (NOCS), reported in Nature.

The Eocene epoch (55 to 34 million years ago) was the last interval of sustained global warmth in Earth's history, a likely consequence of atmospheric carbon dioxide levels much higher than today. It has been known for some time that, at the end of the Eocene, ice sheets on Antarctica first expanded to close their modern size. However, in a recent controversial move, it was proposed that, despite the high global temperatures of the time, very large ice sheets existed 8 million years earlier, not just on Antarctica but also in the Northern Hemisphere.

New findings from NOCS researchers show that, if ice sheets did exist during the controversial interval they must have been small and would have been easily accommodated on Antarctica with no need to invoke Northern Hemisphere glaciation. This result is more in keeping with other geological records and climate model results suggesting that the threshold for ice sheet inception would have been crossed earlier in the Southern Hemisphere than in the Northern Hemisphere because the South Pole has a continent sitting over it (Antarctica) while the North Pole has an ocean (the Arctic).

The NOCS group also identifies a short-lived event immediately preceding the controversial interval during which ocean temperatures briefly increased, the deep ocean became more acidic and the carbon cycle was perturbed by the contribution of isotopically light carbon to the ocean/atmosphere system. This finding hints at the operation of carbon cycle processes common to those thought responsible for the famous transient extreme warming events that occurred between 50 and 55 million years ago, providing a focus for future work aimed at better understanding climate-carbon cycle feedbacks.

Kirsty Edgar, Dr Paul Wilson and Philip Sexton of the University of Southampton's School of Ocean and Earth Science, based at NOCS, used stable isotope analysis of fossil shells of foraminifera (microscopic marine organisms) and bulk sediment from deep-sea sediments to generate a record of climate change and estimate potential global ice volumes in the Eocene. Sediment cores were taken in the tropical Atlantic Ocean by the Ocean Drilling Program (ODP).

Source: University of Southampton

Explore further: Clean air: Fewer sources for self-cleaning

add to favorites email to friend print save as pdf

Related Stories

Researchers decipher climate paradox from the Miocene

Apr 11, 2014

Scientists of the German Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations. ...

Under-ice observatory collects Great Lakes data

Apr 03, 2014

Guy Meadows loves winter. It gives the director of Michigan Technological University's Great Lakes Research Center (GLRC) in the cold, snowy Upper Peninsula a chance to do something few others can: study ...

The Isthmus of Panama: Out of the Deep Earth

Apr 01, 2014

As dates in geologic history go, the formation of the slender land bridge that joins South America and North America is a red-letter one. More than once over the past 100 million years, the two great landmasses ...

Comet lander awakes from long hibernation

Mar 28, 2014

European space experts said on Friday they had successfully reawakened a fridge-sized robot designed to make the first-ever spacecraft landing on a comet.

Recommended for you

Clean air: Fewer sources for self-cleaning

10 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

10 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

16 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

17 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...