Gene regulation in humans is closer than expected to simple organisms

Aug 29, 2007

Using a novel method developed to identify reliably functional binding motifs, researchers from the Weizmann Institute of Science in Israel have performed a genome-wide study of functional human transcription factor binding sites that encompasses nearly ten thousand genes and four hundred known binding motifs. The study appears in the Aug. 29 issue of the online, open-access journal PLoS ONE.

Gene networks are some of the most basic features of a living organism. An external or internal stimulus activates some genes, which in turn control others genes whose activity turns on or off various biological processes (such as the cell cycle, energy production, DNA repair, cellular suicide etc).

Many of the regulatory functions are controlled by attachment of special proteins (transcription factors) to 6 - 10 nucleotide long binding sequences located on the DNA, activating or suppressing expression of the regulated gene. Our ability to identify these binding sites is essential to understand the way biological networks operate.

As the genomes of various organisms became known, it turned out that complex and simple organisms differ less than anticipated in the sizes and makeup of their genomes; complexity of an organism is now believed to be reflected mainly in the manner in which expression is regulated. According to consensus, transcription of human genes is regulated predominantly by factors that bind to sites whose distances from the transcription start site may vary widely and reach tens of thousands of base pairs.

To test the validity of this belief/consensus, researchers from the Weizmann Institute of Science in Israel have performed a genome-wide study of functional human transcription factor binding sites that encompasses nearly ten thousand genes and four hundred known binding motifs. Using a novel method that was developed to identify reliably functional binding motifs, they discovered that in human (and mouse) a surprisingly large fraction of the functional binding sites was concentrated very close to the transcription start site. Hence on the basis of currently available data it seems that the most basic underlying principles and strategies used by the genomes of higher organisms to regulate gene expression are quite close to those used by simple organisms like bacteria and yeast.

The discovery and the method will allow more focused and reliable search for transcriptional binding sites and hence may turn into a major tool to be used in the quest for the transcriptional networks whose function governs all cellular processes, and whose breakdown causes complex diseases. It will generate progress in establishing the design principles used by the transcription process in high organism, and allow a more focused search for the origins of their complexity.

Source: Public Library of Science

Explore further: Mutant protein in muscle linked to neuromuscular disorder

add to favorites email to friend print save as pdf

Related Stories

New functions for 'junk' DNA?

Mar 31, 2014

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding ...

An equation to describe the competition between genes

Mar 13, 2014

In biology, scientists typically conduct experiments first, and then develop mathematical or computer models afterward to show how the collected data fit with theory. In his work, Rob Phillips flips that ...

New bioinformatics tool to visualize transcriptomes

Mar 09, 2014

ZENBU, a new, freely available bioinformatics tool developed at the RIKEN Center for Life Science Technology in Japan, enables researchers to quickly and easily integrate, visualize and compare large amounts of genomic information ...

Robust systems persist in response to mutations

Feb 21, 2014

At first glance, robustness and evolvability—two keys to the continued existence of life—look incompatible. Living things need robust genes; otherwise, any mutation could spell death. At the same time, a species needs ...

Recommended for you

Firm targets 3D printing synthetic tissues, organs

24 minutes ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Gate for bacterial toxins found

15 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...