Bioengineers devise nanoscale system to measure cellular forces

Aug 27, 2007

University of Pennsylvania researchers have designed a nanoscale system to observe and measure how individual cells react to external forces.

By combining microfabricated cantilevers and magnetic nanowire technology to create independent, nanoscale sensors, the study showed that cells respond to outside forces and demonstrated a dynamic biological relationship between cells and their environment.

The study also revealed that cells sense force at a single adhesion point that leads not to a local response but to a remote response from the cell’s internal forces, akin to tickling the cell’s elbow and watching the knee kick.

“The cell senses the force that we apply and adjusts its own internal forces to compensate,” Chris Chen, an associate professor in the Department of Bioengineering in the School of Engineering and Applied Science at Penn, said. “This suggests that either the cell’s cytoskeleton dictates the reaction or the cell organizes a biochemical response. In either instance, cells are adapting at the microscale.”

The findings prove useful to more than just an understanding of the mechanics of single cells. Physical forces play a strong role in how whole tissue grows and functions. Using the Penn system, researchers could monitor for differences in how forces are sensed or generated in normal and diseased cells. This could lead to new therapeutic drug targets and to methods for modifying how cells interact with each other.

To study the cell’s biomechanical response to forces, Chen and his team applied force to each cell using microfabricated arrays of magnetic posts containing cobalt nanowires interspersed amongst an array of non-magnetic posts. In the magnetic field, the posts with nanowires applied an external force to cells cultured on the tops of the posts. Nonmagnetic posts acted as sensors in which traction forces in each cell were measured. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes.

For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost or uniformly across the whole cell but instead occurred at discrete locations along the cell periphery. Together, these data suggest that cells actively adjust their internal tension to mechanical forces arising in their microenvironment and reveal an important dynamic biological relationship between external and internal forces.

Mechanical forces contribute to many cellular functions, including changes in gene expression, proliferation and differentiation.

Applying shear or tensile stresses to cells in culture, for example, can induce changes in adhesion regulation, intracellular signaling and cell function much like internal forces do. The similarities in cellular responses to external and internal forces have led to the suggestion that both types of forces may use shared mechanotransduction pathways to convert mechanical stimuli into biochemical signals. While externally applied and internally generated forces may act independently on cells, the University of Pennsylvania team postulated and then showed that they are coupled.

Source: University of Pennsylvania

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

Solving an organic semiconductor mystery

Jan 16, 2015

Organic semiconductors are prized for light emitting diodes (LEDs), field effect transistors (FETs) and photovoltaic cells. As they can be printed from solution, they provide a highly scalable, cost-effective ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

15 hours ago

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.