Team creates math model for circadian rhythm

Aug 27, 2007

The internal clock in living beings that regulates sleeping and waking patterns -- usually called the circadian clock -- has often befuddled scientists due to its mysterious time delays. Molecular interactions that regulate the circadian clock happen within milliseconds, yet the body clock resets about every 24 hours. What, then, stretches the expression of the clock over such a relatively long period?

Cornell researchers have contributed to the answer, thanks to new mathematical models recently published.

In the August online edition of Public Library of Science (PLOS) Computational Biology, Cornell biomolecular engineer Kelvin Lee, in collaboration with graduate student Robert S. Kuczenski, Kevin C. Hong '05 and Jordi Garcia-Ojalvo of Universitat Politecnica de Catalunya, Spain, hypothesize that the accepted model of circadian rhythmicity may be missing a key link, based on a mathematical model of what happens during the sleeping/waking cycle in fruit flies.

"We didn't discover any new proteins or genes," Lee said. "We took all the existing knowledge, and we tried to organize it."

Using mathematical models initially created by Hong, who has since graduated, the team set out to map the molecular interactions of proteins called period and timeless -- widely known to be related to the circadian clock.

The group hypothesized that an extra, unknown protein would need to be inserted into the cycle with period and timeless, a molecule that Kuczenski named the focus-binding mediator, in order for the cycle to stretch to 24 hours.

Lee said many scientists are interested in studying the circadian clock, and not just to understand such concepts as jet lag -- fatigue induced by traveling across time zones. Understanding the body's biological cycle might, for example, lead to better timing of delivering chemotherapy, when the body would be most receptive, Lee said.

Source: Cornell University

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Final pieces to the circadian clock puzzle found

Sep 14, 2014

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

Recommended for you

Dwindling wind may tip predator-prey balance

8 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

13 hours ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

15 hours ago

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0