Team creates math model for circadian rhythm

Aug 27, 2007

The internal clock in living beings that regulates sleeping and waking patterns -- usually called the circadian clock -- has often befuddled scientists due to its mysterious time delays. Molecular interactions that regulate the circadian clock happen within milliseconds, yet the body clock resets about every 24 hours. What, then, stretches the expression of the clock over such a relatively long period?

Cornell researchers have contributed to the answer, thanks to new mathematical models recently published.

In the August online edition of Public Library of Science (PLOS) Computational Biology, Cornell biomolecular engineer Kelvin Lee, in collaboration with graduate student Robert S. Kuczenski, Kevin C. Hong '05 and Jordi Garcia-Ojalvo of Universitat Politecnica de Catalunya, Spain, hypothesize that the accepted model of circadian rhythmicity may be missing a key link, based on a mathematical model of what happens during the sleeping/waking cycle in fruit flies.

"We didn't discover any new proteins or genes," Lee said. "We took all the existing knowledge, and we tried to organize it."

Using mathematical models initially created by Hong, who has since graduated, the team set out to map the molecular interactions of proteins called period and timeless -- widely known to be related to the circadian clock.

The group hypothesized that an extra, unknown protein would need to be inserted into the cycle with period and timeless, a molecule that Kuczenski named the focus-binding mediator, in order for the cycle to stretch to 24 hours.

Lee said many scientists are interested in studying the circadian clock, and not just to understand such concepts as jet lag -- fatigue induced by traveling across time zones. Understanding the body's biological cycle might, for example, lead to better timing of delivering chemotherapy, when the body would be most receptive, Lee said.

Source: Cornell University

Explore further: Under threat: Kenya's iconic Nairobi national park

add to favorites email to friend print save as pdf

Related Stories

Researchers unwind the mysteries of the cellular clock

1 hour ago

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

Arctic ground squirrel sheds light on circadian rhythms

Nov 11, 2014

The Arctic ground squirrel has developed highly specialized adaptations to extreme environments, and it has a lot to teach us about circadian rhythms and biological clocks. This species maintains circadian ...

Recommended for you

Evolution: The genetic connivances of digits and genitals

16 hours ago

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Study: Volunteering can help save wildlife

16 hours ago

Participation of non-scientists as volunteers in conservation can play a significant role in saving wildlife, finds a new scientific research led by Duke University, USA, in collaboration with Wildlife Conservation ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.