MIT probes secret to bone's strength

Aug 27, 2007

Scientists and engineers are eager to understand the secret behind bone’s lightweight toughness so they can mimic it in the design of new materials, but previous studies have revealed a number of different strength mechanisms at different scales of focus, rather than a single theory.

New research from MIT appearing in a recent issue of Nanotechnology reveals for the first time the role of bone’s atomistic structure in a toughening mechanism that incorporates several previously proposed theories. This mechanism allows for the sacrifice of a small piece of the bone in order to save the whole, helps explain why bone tolerates small cracks, and seems to be adapted specifically to accommodate bone’s need for continuous rebuilding from the inside out.

“The newly discovered molecular mechanism unifies controversial attempts of explaining sources of the toughness of bone, because it confirms that two of the earlier explanations play key roles at the atomistic scale,” said the study’s author, Esther and Harold E. Edgerton Professor Markus Buehler of MIT’s Department of Civil and Environmental Engineering. “It’s quite possible that each scale of bone—from the molecular on up—has its own toughening mechanism. This hierarchical distribution may be critical to explaining the intriguing properties of bone. This knowledge may lay the foundation for new materials design.”

Unlike synthetic building materials, which tend to be homogenous throughout, bone is heterogeneous living tissue whose cells undergo constant change. Scientists have classified bone’s basic structure into a hierarchy of seven levels of increasing scale.

Buehler scaled down his model to the atomistic level, to see how the molecules fit together—and equally important for materials scientists and engineers—how and when they break apart. More precisely, in order to find the mechanism behind bone’s strength, which is considerable for such a lightweight, porous material, he looked at how the chemical bonds within and between molecules respond to force.

He found that the mineralized collagen fibrils in level 2 bone are made up of strings of alternating collagen molecules and consistently sized hydroxyapatite crystals. These strings are “stacked” together in a staggered fashion such that the crystals appear in stair-step configurations. Weak bonds form between the crystals and molecules both in the strings and between the strings.

When pressure is applied to the fabric-like fibrils, some of the weak bonds between the collagen molecules and crystals break, creating small gaps or stretched areas in the fibrils. This stretching spreads the pressure over a broader area and protects other, stronger bonds within the collagen molecule itself, which might break outright if all the pressure were focused on them. The stretching also lets the tiny crystals shift position in response to the force, rather than shatter, which would be the likely response of a larger crystal.

Previously, some researchers suggested that the fundamental key to bone’s toughness is the “molecular slip” mechanism that allows weak bonds to break and “stretch” the fabric without destroying it. Others have cited the characteristic length of bone’s hydroxyapatite crystals (a few nanometers) as an explanation for bone’s toughness; the crystals are too small to break easily.

At the atomistic scale, Buehler sees the interplay of both these mechanisms. This suggests that several earlier proposed concepts may all be significant; bone relies on different toughening mechanisms at different scales.

Buehler also discovered something very notable about bone’s ability to tolerate gaps in the stretched fibril fabric. These gaps are of the same magnitude—several hundred micrometers—as the basic multicellular units or BMUs associated with bone’s remodeling. BMUs are a combination of cells that work together like a small boring tool that eats away old bone at one end and replaces it at the other, forming small crack-like cavities in between as it works its way through the tissue.

Thus, the mechanism responsible for bone’s strength at the molecular scale also explains how bone can remain so strong—even though it contains those many tiny cracks required for its renewal.

This could prove very useful information to civil engineers, who have always used materials like steel that gain strength through density. Nature creates strength in bone by taking advantage of the gaps that ensure continuous material renewal, which themselves are made possible by the material’s hierarchical structure.

“Engineers typically over-dimension structures in order to make them robust. Nature creates robustness by hierarchical structures,” said Buehler.

Source: MIT

Explore further: Pressure probing potential photoelectronic manufacturing compound

add to favorites email to friend print save as pdf

Related Stories

Molecular gate that could keep cancer cells locked up

6 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

Taking great ideas from the lab to the fab

7 hours ago

A "valley of death" is well-known to entrepreneurs—the lull between government funding for research and industry support for prototypes and products. To confront this problem, in 2013 the National Science ...

SR Labs research to expose BadUSB next week in Vegas

8 hours ago

A Berlin-based security research and consulting company will reveal how USB devices can do damage that can conduct two-way malice, from computer to USB or from USB to computer, and can survive traditional ...

Recommended for you

Light pulses control graphene's electrical behavior

20 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 0