When is a stem cell not really a stem cell?

Aug 26, 2007

Working with embryonic mouse brains, a team of Johns Hopkins scientists seems to have discovered an almost-too-easy way to distinguish between “true” neural stem cells and similar, but less potent versions. Their finding, reported this week in Nature, could simplify the isolation of stem cells not only from brain but also other body tissues.

What the researchers identified is a specific protein “signal” that appears to prevent neural stem cells – the sort that might be used to rebuild a damaged nervous system – from taking their first step toward becoming neurons. “Stem cells don’t instantly convert into functional adult tissue,” says author Nicholas Gaiano, Ph.D., assistant professor at the Institute for Cell Engineering. “They undergo a stepwise maturation where they gradually shed their stem cell properties.”

The first step turns stem cells into “progenitor” cells by dictating how signals downstream of a protein called Notch, which regulates stem cells in many different tissues, are transmitted. One well known target of Notch is a protein called CBF1. To help study Notch signaling further, Gaiano and his team created genetically engineered mouse embryos that glow green when CBF1 is turned on.

To their surprise, they noticed that during brain development some of the brain cells generally thought to be neural stem cells stopped glowing, indicating that the CBF1 protein was no longer active in them. A closer look revealed that those cells that went dark were in fact no longer true neural stem cells, which can form all major brain cell types, but instead had aged into progenitor cells, which form mostly neurons.

They tested whether CBF1 was the critical switch by chemically knocking out the protein in neural stem cells. The knockout got the stem cells to rapidly convert to progenitor cells. “However, if we activated the CBF1 protein in progenitor cells we couldn’t get them to shift back into stem cells,” says Gaiano. “So whatever happens biochemically once CBF1 is turned off seems to create a one-way street.”

Another recent study, using the mouse line generated by the Gaiano group, found that CBF1 signaling may play the same role in blood stem cells, leading Gaiano to suspect that his team’s discovery might be a general “switch” distinguishing stem cells from progenitors in many different tissues.

Source: Johns Hopkins Medical Institutions

Explore further: Declining catch rates in Caribbean green turtle fishery may be result of overfishing

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Chimpanzees prefer firm, stable beds

3 hours ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

4 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

5 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.