NEC Develops Novel Silicon Nanophotonics Technology for Optical Interconnections

Feb 09, 2006

NEC Corporation today announced the successful development of fundamental silicon nanophotonics technology that facilitates optical data transmission in large-scale integration (LSI) chips by eliminating data transmission bottlenecks, aiming to realize higher performance in electronic devices.

This development will be presented on February 8 at ISSCC (International Solid-State Circuits Conference) 2006 in San Francisco, California, from February 5 to 9.

Features of the new technology:

-- Reduction of the footprint area for the opto-electronic signal transfer function down to ten microns square, small enough to set onto an LSI chip, is achieved by combining an ultra-small amplifier with an existing Si nano-photodiode.
-- Application to an optical wavelength division multiplexing system enables transmission of a significantly larger amount of data compared to conventional copper wiring through an optical wire with a width of less than one micron.

Both of these developments have significantly increased the possibility of realizing optical data transmission and high-frequency optical clock distribution on LSI chips.

In a networked society, where large amounts of information are exchanged, devices need to operate at higher speeds to be able to process tremendous volumes of data. Conventionally, the operating speed of an LSI chip has been accelerated by increasing the clock rate through miniaturization of transistors. Recently, however, LSI manufacturers have found it difficult to increase clock speed without simultaneously increasing power consumption due to the growing leakage current of transistors as miniaturization advances. To overcome this problem, NEC developed a multicore technology that enables the suppression of clock speed in an LSI chip through parallel processing. This technology already has been commercialized by NEC as an application processor, MP211, for mobile handsets. However, by 2015, the data transfer rate for a microprocessor (MPU) is expected to exceed one terabit per second, ten times higher than current rates, and cause difficulty in conventional electrical wiring in high-performance information and network systems. Thus, there is a great need for novel data transfer technology that employs light (optical wiring technology).

Important factors in developing optical wiring technology include reduction of size, increase in speed and reduction in power of the opto-electronic component, which consists of an opto-electronic device and a high-speed amplifier. NEC has developed a nano-photodiode made of Si as a high-performance, ultra-small opto-electronic device, which has a high-speed response of more than 50 gigahertz with a footprint of less than ten microns square. However, a structure such as this with a high-speed amplifier is very complicated and thus requires a footprint of several tens of microns square, resulting in an unrealistic layout for placement within an LSI chip with an opto-electronic component using conventional technology.

In response to this, NEC leveraged the small electrical capacitance of nano-photodiode (junction capacitance of about ten aF) to reduce the footprint of the high-speed amplifier by approximately two orders of magnitude. In addition, a high-speed opto-electrical signal transfer was carried out with little power consumption by combining the circuit and nano-photodiode.

Moreover, NEC has been striving to develop fundamental items vital to the realization of optical-wavelength division-multiplexing technology, which dramatically increases the amount of data that can be transmitted by sending multiple optical signals with different wavelengths in an optical wire. These items include:

-- Technology for realizing ultra-small optical multiplexers/demultiplexers with a size of about 100 microns square, about one hundredth the size of conventional devices, with an ultra-fine optical waveguide

-- Development of ceramic electro-optic film fabrication by an aerosol deposition method for reducing the size of optical modulators, which change electric signals into optical signals, to 100 microns, about one tenth the size of conventional devices
These developments are aimed at simplification of the LSI structure, which is now becoming progressively complex. These technologies greatly increase the possibility of incorporating into LSI chips optical wires that can realize data transfers 100 times greater than current copper wires with low power and high speed.

NEC believes that its elemental Si nanophotonics technology and new circuit technology will contribute substantially to the sophistication of computers and servers, in addition to the miniaturization of network devices and the development of network components with high endurance for electro-magnetic noise.

Source: NEC

Explore further: Precision gas sensor could fit on a chip

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.