Scientists investigate initial molecular mechanism that triggers neuronal firing

Aug 22, 2007

Carnegie Mellon University chemists have solved a decade-long molecular mystery that could eventually help scientists develop drug therapies to treat a variety of disorders, including epilepsy and Alzheimer’s disease.

Using intensive theoretical and computational calculations, Carnegie Mellon researchers have modeled the initial molecular changes that occur when the neurotransmitter glutamate docks with a receptor on a neuron, which sets in motion a chain of events that culminates in the neuron firing an electrical impulse.

Tatyana Mamonova, a postdoctoral fellow in Assistant Professor Maria Kurnikova’s laboratory at Carnegie Mellon, will present this report Wednesday, Aug. 22 at the 234th national meeting of the American Chemical Society in Boston.

Glutamate receptors, which are proteins found in neurons, form a channel through the neuron’s membrane. When glutamate, a signaling molecule released by other neurons, docks with the glutamate receptor, it causes a series of molecular shape changes that eventually open the channel and excite the neuron. Although the structure of the glutamate receptor’s docking site was known, no one knew precisely which atomic interactions between glutamate and the receptor caused the receptor to change its conformation — until now.

“The docking site (or ligand binding domain) closes when glutamate binds to it. Tatyana found two key electrostatic interactions that lock the ligand-binding site in its closed form once the ligand is bound,” said Kurnikova. “With this knowledge in hand, we can now model binding-site closure and opening using a computer.”

Being able to simulate this conformational change is critical to understanding how binding regulates the protein channel, Kurnikova added. “Ultimately, we could use the computer model to design a drug that either inhibits or enhances the activity of the glutamate receptor. Typically, pharmaceutical companies may scan hundreds of potential drugs to find one that has the desired affect. Determining how drugs interact with the glutamate receptor’s ligand-binding domain in a computer model would save tremendous time and money in the drug-development process.”

To pinpoint the molecular mechanism that switches the binding domain’s conformation from open to closed, Mamonova used a variety of chemical-modeling techniques, including molecular dynamics simulations, continuum electrostatics studies, and rigidity and hydrogen-bond analyses. Many of these tasks are theoretically and computationally intensive, and Mamonova frequently relied on the high-performance computing power at the Pittsburgh Supercomputing Center, a joint effort of Carnegie Mellon and the University of Pittsburgh together with Westinghouse Electric Company.

This work is funded in part by the National Institutes of Health and a National Science Foundation Partnerships for Advanced Computational Infrastructure award.

Source: Carnegie Mellon University

Explore further: Treatment for overactive bladder and irritable bowel syndrome advanced through pioneering research

add to favorites email to friend print save as pdf

Related Stories

Water crisis threatens thirsty Sao Paulo

6 hours ago

Sao Paulo is thirsty. A severe drought is hitting Brazil's largest city and thriving economic capital with no end in sight, threatening the municipal water supply to millions of people.

Canada to push Arctic claim in Europe

7 hours ago

Canada's top diplomat will discuss the Arctic with his Scandinavian counterparts in Denmark and Norway next week, it was announced Thursday, a trip that will raise suspicions in Russia.

Google to help boost Greece's tourism industry

7 hours ago

Internet giant Google will offer management courses to 3,000 tourism businesses on the island of Crete as part of an initiative to promote the sector in Greece, industry union Sete said on Thursday.

NKorea launch pad expansion 'nearing completion'

7 hours ago

A U.S. research institute says construction to upgrade North Korea's main rocket launch pad should be completed by fall, allowing Pyongyang (pyuhng-yahng) to conduct a launch by year's end if it decides to do so.

Recommended for you

Biologists reprogram skin cells to mimic rare disease

14 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

User comments : 0