Genetics determine optimal drug dose of common anticoagulant

Aug 21, 2007

Genetic testing can be used to help personalize the therapeutic dosage of warfarin, a commonly-used anticoagulant, according to research published in the September 1, 2007, issue of Blood, the journal of the American Society of Hematology. This result represents one of the first applications of using an individual’s genetic information to guide personal medical care.

Because individuals metabolize drugs differently, varying doses of warfarin are needed for the drug to be effective in each patient. Too much warfarin can cause severe bleeding, and too little can cause dangerous blood clots. Currently, there is little guidance for predicting how much of the drug a person will need. Physicians have had to roughly estimate an initial dose of warfarin and then continually monitor a patient’s International Normalized Ratio (INR) value (a measure of how fast the blood clots), during treatment to tweak the dosage by trial and error.

For the first time, a group of St. Louis researchers combined the standard INR method with genetic testing to predict the therapeutic warfarin dose. Since warfarin is often prescribed after major orthopedic surgery to prevent blood clots in the legs, the study followed 92 adults undergoing either total hip or knee replacement at the Washington University Medical Center, who had never previously taken the anticoagulant.

Prior to warfarin treatment, the researchers collected blood samples and each patient’s medical history. The blood tests were used to examine variations in two genes, CYP2C9 and VKORC1, that may affect warfarin dosing. Variants in CYP2C9 impair the body’s breakdown of warfarin; variants in VKORC1 cause increased warfarin sensitivity. The patients were assigned initial doses of warfarin based on clinical factors and their genotype. The researchers followed the patients until successful treatment outcomes were achieved several weeks later.

By combining variants in these genes with initial INR response and other clinical factors, the researchers derived a dosing equation that estimated the therapeutic warfarin dose. The researchers found that these two genes were important in predicting the response to warfarin. Additional factors, such as blood loss during surgery and smoking status, also correlated with therapeutic dose.

Using these data, the researchers developed a therapeutic model that could be used by physicians to refine warfarin dosage with greater accuracy than clinical factors alone. The researchers have made this dosing model publicly available on a free Web site, www.warfarindosing.org, and are now validating it in orthopedic and non-orthopedic patients beginning warfarin therapy.

If validated, particularly in patients taking warfarin for reasons other than orthopedic surgery, such as to prevent stroke, this gene-based dosing could predict a safe and effective warfarin dose at the start of treatment, thus minimizing the risks of the current trial-and-error approach.

Source: American Society of Hematology

Explore further: A link between DNA transcription and disease-causing expansions

add to favorites email to friend print save as pdf

Related Stories

Using gold nanoprobes to unlock your genetic profile

May 29, 2014

A fast and cost-effective genetic test to determine the correct dosage of blood thinning drugs for the treatment of stroke, heart problems and deep vein thrombosis has been developed by researchers at the Institute of Bioengineering ...

More advantages found for new drug: study

Feb 10, 2011

New findings from a McMaster University-led study of a drug recently identified to prevent stroke in patients with atrial fibrillation have been published in the high-impact New England Journal of Medicine (NEJM) today. ...

Researchers measure quality of care in oral anticoagulation

Jan 03, 2011

Researchers from Boston University School of Medicine (BUSM) and the Bedford VA Medical Center believe that risk-adjusted percent time in therapeutic range (TTR) should be used as part of an effort to improve anticoagulation ...

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.