MIT invents 'lab on a chip' to automate gene studies

Aug 20, 2007
MIT invents 'lab on a chip' to automate gene studies
This photo shows an immobilized C. elegans worm inside the new microfluidic chip designed at MIT. The green spots are neurons. Image courtesy / Mehmet Fatih Yanik, MIT

Genetic studies on whole animals can now be done dramatically faster using a new microfluidic chip developed by engineers at MIT.

The new "lab on a chip" can automatically treat, sort and image small animals like the 1-millimeter C. elegans worm, accelerating research and eliminating human error, said Mehmet Yanik, MIT assistant professor of electrical engineering and computer science.

Yanik and his colleagues described their device in the advance online issue of the Proceedings of the National Academy of Sciences the week of Aug. 20. "Lab on a chip" technologies are being developed to sort and image individual cells, but this is the first device that can be used to study whole animals.

C. elegans is often used in studies designed to identify which genes control which phenotypes, or traits. Researchers traditionally do this by treating them with a mutagen, or by using RNA interference, in which expression of a certain gene is blocked with a small strand of RNA. Such studies normally take months or years to complete. The new chip, which sorts and images worms in milliseconds, dramatically speeds up that process.

"Normally you would treat the animals with the chemicals, look at them under the microscope, one at a time, and then transfer them," Yanik said. "With this chip, we can completely automate that process."

The tiny worms are flowed inside the chip, immobilized by suction and imaged with a high resolution microscope. Once the phenotype is identified, the animals are routed to the appropriate section of the chip for further screening.

The worms can be treated with mutagen, RNAi or drugs before they enter the chip, or they can be treated directly on the chip, using a new, efficient delivery system that loads chemicals from the wells of a microplate into the chip.

"Our technique allows you to transfer the animals into the chip and treat each one with a different gene silencer or a different drug," Yanik said.

Yanik and his colleagues plan to use the chips to continue their research on neural degeneration and regeneration in C. elegans. Yanik and his collaborators had previously demonstrated a high precision femtosecond laser technology to cut axons in living animals and then observe which genes are involved in axon regeneration.

The lead author of the paper is Chris Rohde, a graduate student in electrical engineering and computer science (EECS). Other authors of the paper are Matthew Angel, a graduate student in EECS, Fei Zeng, a postdoctoral fellow in the Research Laboratory of Electronics, and Ricardo Gonzalez-Rubio, a graduate student in biological engineering.

Source: MIT

Explore further: Decreasing biodiversity affects productivity of remaining plants

Related Stories

OrangeSec pair said Cortana visited Android

5 hours ago

Can, did, Cortana work on Android? A talked-about act at droidcon 2015: a presentation titled "Cracking Cortana." The OrangeSec team arrived at the Turin, Italy, event to show their work in a CortanaProxy ...

Mercury MESSENGER nears epic mission end

6 hours ago

A spacecraft that carries a sensor built at the University of Michigan is about to crash into the planet closest to the sun—just as NASA intended.

DOJ, FBI acknowledge flawed testimony from unit

8 hours ago

The Justice Department and FBI have formally acknowledged that nearly every examiner in the FBI Laboratory's microscopic hair comparison unit gave flawed testimony in almost all trials in which they offered evidence against ...

Dawn glimpses Ceres' north pole

8 hours ago

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken ...

Recommended for you

Rafts on the cell membrane

24 minutes ago

Tiny structures made of lipid molecules and proteins have been believed to wander within the membrane of a cell, much like rafts on the water. This "raft hypothesis" has been widely accepted, but now scientists ...

Researchers explain skin fusion at a molecular level

26 minutes ago

Scientists from the Goethe University (GU) Frankfurt, the European Molecular Biology Laboratory (EMBL) Heidelberg and the University of Zurich explain skin fusion at a molecular level and pinpoint the specific ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.