The building blocks of memory

Aug 20, 2007
The building blocks of memory
A new contact is established between nerve cells within minutes after a learning stimulus. Yet it takes up to one day until information can be exchanged. It is highly probable that already existing contacts will be displaced by the new connection. Image: Max Planck Institute for Neurobiology, Martinsried

Learning new things, remembering past experiences and adapting to a changing environment - these abilities carried out by the brain are essential for day-to-day survival. This unique flexibility is in part accomplished through the continuous remodeling of the brain’s nerve cells.

Scientists at the Max Planck Institute of Neurobiology were able to demonstrate that neuronal activity causes the formation of new cell connections, and to determine how quickly these new synapses become functional: while nerve cells create new contacts with neighboring cells within a few minutes after stimulation, it takes several hours before these connections are mature enough to transmit information.

"I really have to strain my brain to understand this!" - Who hasn’t experienced this, or something like it, when it comes to trying to understand something complicated? Scientists have only recently been able to show that this is not very far-fetched. For whenever we learn something new, regardless of how complicated it is, our "little grey cells", or neurons, grow new contacts to their neighboring cells. If the new information is retained, then such contacts become stable.

However, what is the time frame for the development of these connections? Is the exchange of information possible immediately after two nerve cells make contact? And what happens in the brain when new information dispels old information, for example, when learning a new language, which can result in the fading of knowledge of a previously learned language? Scientists at the Max Planck Institute of Neurobiology are now able to provide some answers to these questions.

The Martinsried-based neurobiologists, in cooperation with colleagues in Zurich, have been investigating the relation between the development of new cell contacts, called "spines", and the creation of functional synapses. Synapses enable the transfer of information between cells. The scientists have been focusing their experiments on nerve cells from the hippocampus, the brain region that is essential for learning and memory processes.

In order to intentionally cause the nerve cells to react, the scientists stimulated a group of neurons via a short electrical impulse of high frequency. It is a known fact that this type of electrical stimulation causes the formation of new spines - similar to what happens during learning processes. The key question, however, whether and when these new spines actually form functional synapses and thus play a role in memory functions has, thus far, remained unanswered.

Using time-lapse two-photon microscopy, the scientists were able to follow the outgrowth of spines in the immediate area of the stimulated area. Further analysis with an electron microscope enabled the detection of functional synapses in the newly developed spines. The observed changes in neuronal connections and their dynamics surprised the scientists: new spines began to sprout from the stimulated nerve cells within minutes of the stimulation. The growth of these thin spines was initially not random, but directed toward a potential contact site.

However, despite the quick connection of these spines to new contact sites, their further differentiation seemed to follow the motto "haste makes waste": the transfer of information through the newly established contact was not possible within the first eight hours. It took another few hours before it could be established whether the connections would degenerate or thrive, thereby forming synapses. All of the contacts that still persisted after 24 hours had fully-functional synapses and a good chance for continued existence.

The unraveling of the time-scale and functional relationships were not the only exciting observations that the scientists were treated to. When a new spine made contact with a site already hosting a contact, the new spine was highly likely to displace the old connection. "We are not yet completely sure what this means," said Valentin Nägerl from the Max Planck Institute of Neurobiology. "But it could indicate, for example, that newly learned information might lead to a fading of older information."

That it is easier to retrieve information which has been learned previously could also be related to spine modifications: the displaced connections might not disintegrate completely, but can perhaps be reactivated again at a later time. If this is true, and whether repeated learning impulses have an effect on the development and longevity of synapses, are some of the questions now being pursued by the scientists. All of these findings are contributing to a better understanding of the mechanisms involved in learning and memory. And it is also relatively safe to assume that a few of your nerve cells have just made some new connections.

Citation: Nägerl UV, Köstinger G, Anderson, JC, Martin AC and Bonhoeffer T, Protracted synaptogenesis after activity-dependent spinogenesis in Hippocampal neurons, The Journal of Neuroscience, July 2007

Source: Max Planck Institute of Neurobiology

Explore further: Radical vaccine design effective against herpes viruses

add to favorites email to friend print save as pdf

Related Stories

Evolving robot brains

32 minutes ago

Researchers are using the principles of Darwinian evolution to develop robot brains that can navigate mazes, identify and catch falling objects, and work as a group to determine in which order they should ...

Facebook fends off telecom firms' complaints

35 minutes ago

Facebook founder Mark Zuckerberg fended off complaints on Monday that the hugely popular social network was getting a free ride out of telecom operators who host its service on smartphones.

Scientists find clues to cancer drug failure

37 minutes ago

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Glass coating improves battery performance

46 minutes ago

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

Recommended for you

Radical vaccine design effective against herpes viruses

5 hours ago

Herpes simplex virus infections are an enormous global health problem and there is currently no viable vaccine. For nearly three decades, immunologists' efforts to develop a herpes vaccine have centered on ...

Popular antioxidant likely ineffective, study finds

14 hours ago

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University ...

New findings on 'key players' in brain inflammation

14 hours ago

Inflammation is the immune system's natural reaction to an 'aggressor' in the body or an injury, but if the inflammatory response is too strong it becomes harmful. For example, inflammation in the brain occurs ...

Gut microbial mix relates to stages of blood sugar control

Mar 05, 2015

The composition of intestinal bacteria and other micro-organisms—called the gut microbiota—changes over time in unhealthy ways in black men who are prediabetic, a new study finds. The results will be presented Friday ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.