For earthquakes 'speed kills'

Aug 17, 2007
For earthquakes 'speed kills'
A box canyon on the San Andreas fault: High speed ruptures travelling along the straight section of the fault could see Santa Barbara and Los Angeles worst hit in future earthquakes. Credit: iStockphoto/William Royer.

High-speed ruptures travelling along straight fault lines could explain why some earthquakes are more destructive than others, according to an Oxford University scientist.

In this week’s Science, Professor Shamita Das suggests that ruptures in the Earth’s surface moving at 6km per second could make future earthquakes along California’s San Andreas fault much more destructive than current models predict.

Professor Das compared data from the 1906 California earthquake with data from a similar earthquake that occurred in 2001 in Kunlunshan, Tibet. The comparison suggests that, in both, the long straight portions of the fault enabled ruptures to travel twice as fast as the original ‘shear’ wave travelling through the rock. Such ‘super-shear’ waves were once thought to be impossible but could now explain why similar magnitudes of earthquake can cause much greater devastation in some areas than others.

‘Long straight faults are more likely to reach high rupture speeds,’ said Professor Das of the Department of Earth Sciences. ‘The fault starts from rest, then accelerates to the maximum permissible speed and continues at this speed until it reaches an obstacle such as a large ‘bend’. If the next earthquake in southern California follows the same pattern as the ones in California in 1857 and 1906, and in Tibet in 2001, a super-shear rupture travelling southward would strongly focus shock waves on Santa Barbara and Los Angeles.’

The 2001 Kunlunshan earthquake is of particular interest to scientists because it was so well preserved owing to its remote location and dry desert environment. Studies of the earthquake revealed telltale off-fault open cracks only at the portions where it was found to have a very high rupture speed. ‘These cracks confirm that the earthquake reached super-shear speeds on the long, straight section of the fault. This is the first earthquake where such direct evidence is available and it is exactly the kind of evidence that we do not have for the similar earthquake in California 1906, due to the heavy rains and rapid rebuilding that occurred there immediately afterwards.’

Professor Das believes that future research into rupture speeds could take scientists one step closer to predicting the potential impact of earthquakes in particular regions.

She commented: ‘It appears that the 1857 and 1906 California earthquakes may have propagated faster than was previously thought. If this is the case then we need to apply the same analysis to other similar faults around the world. By developing a measure of the ‘straightness’ of faults and finding and recording evidence such as off-fault open cracks we hope to better understand these potentially devastating phenomena.’ The full article, entitled ‘The Need to Study Speed’, is published in Science on 17 August 2007.

Source: University of Oxford

Explore further: Huge waves measured for first time in Arctic Ocean

add to favorites email to friend print save as pdf

Related Stories

Researchers find evidence of super-fast deep earthquake

Jul 10, 2014

As scientists learn more about earthquakes that rupture at fault zones near the planet's surface—and the mechanisms that trigger them—an even more intriguing earthquake mystery lies deeper in the planet.

Rainwater discovered at new depths

Jul 15, 2014

University of Southampton researchers have found that rainwater can penetrate below the Earth's fractured upper crust, which could have major implications for our understanding of earthquakes and the generation ...

Study links disposing of wastewater to Oklahoma earthquakes

Jul 03, 2014

The dramatic increase in earthquakes in central Oklahoma since 2009 is likely attributable to subsurface wastewater injection at just a handful of disposal wells, finds a new study to be published in the journal Science on Jul ...

Recommended for you

Huge waves measured for first time in Arctic Ocean

4 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

New research reveals Pele is powerful, even in the sky

10 hours ago

One might assume that a tropical storm moving through volcanic smog (vog) would sweep up the tainted air and march on, unchanged. However, a recent study from atmospheric scientists at the University of Hawai'i ...

Image: Wildfires continue near Yellowknife, Canada

11 hours ago

The wildfires that have been plaguing the Northern Territories in Canada and have sent smoke drifting down to the Great Lakes in the U.S. continue on. NASA's Aqua satellite collected this natural-color image ...

Excavated ship traced to Colonial-era Philadelphia

12 hours ago

Four years ago this month, archeologists monitoring the excavation of the former World Trade Center site uncovered a ghostly surprise: the bones of an ancient sailing ship. Tree-ring scientists at Columbia ...

User comments : 0