Photons on the Half Shell

Aug 16, 2007
Photons on the Half Shell
Aaron Lindenberg (left) with Haidan Wen, who designed the optical layout used to create terahertz pulses.

In the realm of ultra-fast science, there's a region where photons of light can be made to dance only half steps. Here, advances in laser science are letting researchers tinker with the behavior light in an entirely new way.

"It's a really new regime for studying materials properties," said Aaron Lindenberg of SLAC's PULSE Center and the Stanford Materials Science and Engineering Department. "We’re just learning how to create such intense fields in this relatively simple way."

Lindenberg's team is pioneering a technique that creates highly intense beams of low-energy infrared photons, separated into extremely short pulses lasting less than a trillionth of a second (one picosecond). These "terahertz fields" show promise as a powerful tool for manipulating matter at the atomic level.

Terahertz fields are nothing new. Very weak terahertz pulses are emitted when electrons shift around naturally inside molecules, and they emanate from electrons inside accelerators. Lindenberg's team is combining this phenomenon with a high-power laser that can be switched on and off very rapidly, creating terahertz fields of unprecedented intensity.

Just like ordinary visible light, infrared photons exist as both particles and waves. As waves, they take the form of electromagnetic oscillations, a rapid push–pull in the electromagnetic environment that rises and falls extremely rapidly. For visible light, these oscillations occur hundreds of trillions of times a second. Now, using a combination of commercially available lasers and optics, Lindenberg's team has devised a way of generating photon pulses that can be switched on and off in roughly half the time of one oscillation. The result is only half an oscillation—all of the push, with none of the pull.

"It's like a hammer," says Lindenberg. "You can use these pulses to give a kick to something, to push it one direction. They could be used to push an electron from one position to another."

Once the phenomenon is more fully understood, it could be used to probe alternative-energy-related materials used in solar cells. Within semiconductors, the motion and speed of electrons changes very rapidly. Manipulating and measuring how these electrons move around could lead to more efficient solar cells, and could improve the efficiency of the production of hydrogen from water. Terahertz pulses might also be used to drive ultrafast switches for computer memory, which could dramatically increase computing speed.

Interest in terahertz pulses has risen in the last decade with the advent of free-electron lasers (FELs), such as the Linac Coherent Light Source now under construction at SLAC. FELs generate extremely intense terahertz fields as a by product of how they accelerate electrons.

"We're at a very early stage," says Lindenberg. "There's a lot of controversy out there about exactly how this process works. Part of what we're doing is trying to understand that… and maybe by understanding that we can generate stronger fields and manipulate and control materials in new ways."

Source: by Brad Plummer, SLAC Today

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Magnetisation controlled at picosecond intervals

Aug 12, 2013

A terahertz laser developed at the Paul Scherrer Institute makes it possible to control a material's magnetisation at a timescale of picoseconds. In their experiment, the researchers shone extremely short ...

New level for continuous-wave terahertz lasers

Oct 03, 2013

Since the first quantum cascade (QC) laser was demonstrated in 1994 and implemented in THz regime in 2002, they have become one of the most important solid state light sources in this frequency range. The ...

Recommended for you

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Hand out money with my mobile? I think I'm ready

A service is soon to launch in the UK that will enable us to transfer money to other people using just their name and mobile number. Paym is being hailed as a revolution in banking because you can pay peopl ...