Ideally Ordered Nanohole Patterned Media Enables Capacity Potential to 1.2TB for 2.5'' HDD

Aug 09, 2007

Fujitsu today announced the results of a joint collaboration by Yamagata Fujitsu Limited, Fujitsu Laboratories Limited, and Kanagawa Academy of Science and Technology to create ideally “ordered” alumina nanohole patterned media.

In a world first, Fujitsu has achieved the basic read/write capability of ideally ordered alumina nanoholes on a 2.5” magnetic disk with a flying head.

In January 2007, Fujitsu announced one Terabit/in2 technology, a breakthrough for future HDD capacity expansion. At that time, one-dimensionally aligned alumina nanohole patterns with 25nm pitch were produced to support one Terabit/in2 bit recording density.

Now for the first time, Fujitsu has successfully created ideally “ordered” alumina nanohole patterns for isolated bit-by-bit recording on a large disk area by establishing an innovative fabrication process, and confirmed the basic read/write capability in each individual nanohole of the patterned media using a flying head on a rotating disk.

Using Perpendicular Magnetic Recording (PMR) processes, the patterned alumina nanohole media was fabricated using nano-imprint lithography, anodic oxidation, and cobalt electrodeposition at a density of 100nm pitch nanoholes that was suitable to currently available head technology.

“This technology achievement is a major leap for the industry and confirms Fujitsu’s position as a research leader on the path to one Terabit/in2,” said David James, vice president, advanced product engineering, Fujitsu Computer Products of America, Inc. “Fujitsu is the first company to demonstrate read/write signals in individual ideally ordered alumina nanohole using a flying head for measurement. With the growing demand for hard drives with high capacities, especially in small form factors, one Terabit/in2 would enable potential storage capacities of up to 1.2TB on a 2-platter 2.5” drive. We expect this breakthrough to provide revolutionary changes for various IT and consumer applications.”

This achievement has been published in the July online version of the eminent technology journal, Applied Physics Letters Volume 91 Issue 2, July 9th 2007.”

Source: Fujitsu

Explore further: Simulations provide new insight into emerging nanoelectronic device

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

From massive supercomputers come tiniest transistors

Mar 04, 2015

A relentless global effort to shrink transistors has made computers continually faster, cheaper and smaller over the last 40 years. This effort has enabled chipmakers to double the number of transistors on ...

Electrons moving along defined snake states

Mar 03, 2015

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.