Researchers discover some of the oldest forms of life

Aug 07, 2007

University of Queensland researchers have identified microbial remains in some of the oldest preserved organic matter on Earth, confirmed to be 3.5 billion years-old.

The UQ team, led by School of Physical Sciences scientists Dr Miryam Glikson and Associate Professor Sue Golding as well as Associate Professor Lindsay Sly from the School of Molecular & Microbial Sciences, are the first to conclusively confirm the nature and source of the organic material.

Aspects of the research have been published in the prestigious scientific journal Precambrian Research.

“What we have found is the first visual confirmation of primitive microbial communities in what is considered to be the best preserved ancient organic matter on our planet,” Dr Glikson, the instigator of the research, said.

Dr Golding, Director UQ's Stable Isotope Laboratory in the Division of Earth Sciences, said previous studies used indirect analytical methods that were only able to suggest microbial involvement, not confirm it.

“We used difficult and time-consuming electron microscope techniques to conclusively confirm the microbial remains,” Dr Golding said.

“The integration of observational and micro-analytical techniques is unique to our approach.”

The core drilling samples from Western Australia's Pilbara region were collected by PhD student Lawrie Duck who said it was an amazing experience to “hold in your hands rocks that contain remains of some of the earliest forms of life on Earth.”

“The Pilbara region is such a good research site as it has ancient forms of the white smokers active at plate margins today and black sulfidic smokers found in sea floor vent systems in tectonically active sites,” he said.

“These are the places where scientists believe life on Earth might have had its origins.”

Dr Glikson said the UQ team had then taken the study further by comparing the fossil microbial structures to primitive microbes found today in seafloor environments similar to those existing 3.5 billion years ago.

“The microbiologists on the team, led by Dr Sly, cultured currently existing primitive microbes under simulated conditions to those of the ancient forms of life,” Dr Glikson said.

“A remarkable resemblance was found between the structures of the cultured microbial entities at their stage of disintegration and those of the ancient microbial remains.”

The other members of the UQ research team were Robyn Webb, from the Centre for Microscopy and Microanalysis, a specialist in transmission electron microscopical techniques; Justice Baiano, from the School of Molecular & Microbial Sciences, who developed special facilities to culture primitive microbes derived from seafloor mineral-laden hot springs active at plate margins today; and Kim Baublys, from the Stable Isotope Laboratory, who undertook analysis of products from the culture experiments.

A comparison with organic matter from rocks of similar age in South Africa also yielded microbial remains identical to those from the Pilbara, further confirming the UQ work. This was achieved with the collaboration of Dr Axel Hofmann from the University of Kwazulu, South Africa and Dr Robert Bolhar formerly of the University of Canterbury, New Zealand.

Source: UQ

Explore further: New camera sheds light on mate choice of swordtail fish

add to favorites email to friend print save as pdf

Related Stories

US poverty rate dipped slightly in 2013

27 minutes ago

The number of people living in poverty in the United States dropped slightly in 2013 to 45.3 million, according to figures released Tuesday by the Census Bureau.

Tornadoes occurring earlier in 'Tornado Alley'

40 minutes ago

Peak tornado activity in the central and southern Great Plains of the United States is occurring up to two weeks earlier than it did half a century ago, according to a new study whose findings could help ...

And so they beat on, flagella against the cantilever

42 minutes ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Recommended for you

Healthy humans make nice homes for viruses

3 hours ago

The same viruses that make us sick can take up residence in and on the human body without provoking a sneeze, cough or other troublesome symptom, according to new research at Washington University School ...

Meteorite that doomed dinosaurs remade forests

5 hours ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

New camera sheds light on mate choice of swordtail fish

7 hours ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

User comments : 0