Star caught smoking

Aug 03, 2007
Star caught smoking
Artist rendering of the surroundings of a R Coronae Borealis star, as inferred from the observations obtained with ESO's Very Large Telescope. Such stars show erratic variability that is thought to arise from the presence of large clouds of dust in their envelope. Credit: ESO

Using ESO's Very Large Telescope Interferometer, astronomers from France and Brazil have detected a huge cloud of dust around a star. This observation is further evidence for the theory that such stellar puffs are the cause of the repeated extreme dimming of the star.

R Coronae Borealis stars are supergiants exhibiting erratic variability. Named after the first star that showed such behaviour, they are more than 50 times larger than our Sun. R Coronae Borealis stars can see their apparent brightness unpredictably decline to a thousandth of their nominal value within a few weeks, with the return to normal light levels being much slower. It has been accepted for decades that such fading could be due to obscuration of the stellar surface by newly formed dusty clouds.

This 'Dust Puff Theory' suggests that mass is lost from the R Coronae Borealis (or R CrB for short) star and then moves away until the temperature is low enough for carbon dust to form. If the newly formed dust cloud is located along our line-of-sight, it eclipses the star. As the dust is blown away by the star's strong light, the 'curtain' vanishes and the star reappears.

RY Sagittarii is the brightest member in the southern hemisphere of this family of weird stars. Located about 6,000 light-years away towards the constellation of Sagittarius (The Archer), its peculiar nature was discovered in 1895 by famous Dutch astronomer Jacobus Cornelius Kapteyn.

In 2004, near-infrared adaptive optics observations made with NACO on ESO's Very Large Telescope allowed astronomers Patrick de Laverny and Djamel Mékarnia to clearly detect the presence of clouds around RY Sagittarii. This was the first direct confirmation of the standard scenario explaining the light variations of R CrB stars by the presence of heterogeneities in their envelope surrounding the star.

However, the precise place where such dust clouds would form was still unclear. The brightest cloud detected was several hundred stellar radii from the centre, but it had certainly formed much closer. But how much closer?

To probe the vicinity of the star, the astronomers then turned to ESO's Very Large Telescope Interferometer. Combining two different pairs of the 8.2-m Unit Telescopes, the astronomers explored the inner 110 astronomical units around the star. Given the remoteness of RY Sagittarii, this corresponds to looking at details on a one-euro coin that is about 75 km away!

The astronomers found that a huge envelope, about 120 times as big as RY Sagittarii itself, surrounds the supergiant star. But more importantly, the astronomers also found evidence for a dusty cloud lying only about 30 astronomical units away from the star, or 100 times the radius of the star.

"This is the closest dusty cloud ever detected around a R CrB-type variable since our first direct detection in 2004," says Patrick de Laverny, leader of the team. "However, it is still detected too far away from the star to distinguish between the different scenarios proposed within the Dust Puff Theory for the possible locations in which the dusty clouds form."

If the cloud moves at the speed of 300 km/s, as one can conservatively assume, it was probably ejected more than 6 months before its discovery from deeper inside the envelope. The astronomers are now planning to monitor RY Sagittarii more carefully to shed more light on the evolution of the dusty clouds surrounding it.

"Two hundred years after the discovery of the variable nature of R CrB, many aspects of the R CrB phenomenon remain mysterious," concludes de Laverny.

Citation: "A snapshot of the inner dusty regions of a R CrB-type variable", by I.C. Leão et al., Astronomy and Astrophysics 466, L1-L4, 2007

Source: European Southern Observatory

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

Unusual asteroid suspected of spinning to explosion

Mar 20, 2015

A team led by astronomers from the Jagiellonian University in Krakow, Poland, recently used the W. M. Keck Observatory in Hawaii to observe and measure a rare class of "active asteroids" that spontaneously ...

Milky Way's center unveils supernova 'dust factory'

Mar 19, 2015

Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations - using an infrared telescope aboard a modified Boeing 747 - of cosmic building-block dust resulting ...

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.