For the first time, patterns of excitation waves found in brain's visual processing center

Jul 31, 2007

Neuroscientists have long believed that vision is processed in the brain along circuits made up of neurons, similar to the way telephone signals are transferred through separate wires from one station to another. But scientists at Georgetown University Medical Center discovered that visual information is also processed in a different way, like propagating waves oscillating back and forth among brain areas. Their findings are published in the July 5 issue of the journal Neuron.

“What we found is that signals pass through brain areas like progressive waves, back and forth, a little bit like what fans do at baseball games,” said the study’s corresponding author, Jian-young Wu, Ph.D., an associate professor in the Department of Physiology and Biophysics at Georgetown. Just as the stadium wave is coordinated and travels through the crowd, a collective pattern emerges from the activities of millions of neurons in the visual areas, he said, explaining, “It simply makes sense that brain function is the result of large numbers of neurons working together.”

This challenges longstanding notions about how the brain processes sensory information, Wu said. “One traditional model theorizes that neurons are hooked together into specific circuits. However, new imaging methods tell us that there are more than just circuits.”

Wu and his colleagues visualized wave-like patterns in the brain cortex using a new method called voltage sensitive dye imaging. They used a special dye that binds to the membrane of neurons and changes color when electrical potential passes along active neurons.

Traditionally, scientists have studied brain activity by placing electrodes in the brain and measuring the electrical currents that are related to neuronal activity. Because it is difficult to put many electrodes into the brain, the spatiotemporal pattern of the neuronal activity has long been ignored. “Now, with optical methods, we can watch sequential activation of different sectors of the visual cortex when the brain is processing sensory information," Wu said.

Wu believes wave patterns play an important role in initiating and organizing brain activity involving millions to billions of neurons. A few years ago, Wu's imaging group uncovered spiraling waves resembling little hurricanes in animal epilepsy models. Wu thinks that through this hurricane-like spiral pattern, a small area of damaged neural tissue can generate a powerful storm that invades large normal brain areas and starts a seizure attack. This hypothesis would mean that disorders such as epilepsy could be viewed not just as mis-wiring in the brain, but as an abnormal wave pattern that invades normal tissue.

Finding waves during visual processing is an important step toward understanding how the brain processes sensory information, explained Wu. This understanding has the potential to help scientists understand the abnormal waves that are generated in the brains of patients with Parkinson's disease and epilepsy, and how the mind fails when the brain of an Alzheimer’s disease patient cannot properly organize population neuronal activity, he said.

Wu believes that additional research is needed in order to understand both normal and abnormal waves in the human brain. “Understanding how the brain handles these waves will provide further insight into the functioning of one of the most complex systems in the universe,” he said.

Source: Georgetown University Medical Center

Explore further: Investigators show how immune cells are 'educated' not to attack beneficial bacteria

Related Stories

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

The origins of polarized nervous systems

Mar 03, 2015

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

Method to reconstruct overt and covert speech

Oct 31, 2014

Can scientists read the mind, picking up inner thoughts? Interesting research has emerged in that direction. According to a report from New Scientist, researchers discuss their findings in converting brain ...

How does the human brain memorize a sound?

Jun 03, 2010

Sound repetition allows us to memorize complex sounds in a very quick, effective and durable way. This form of auditory learning, which was evidenced for the first time by French researchers from CNRS, ENS Paris, and Paris ...

Sonic booms in nerves and lipid membranes

Jan 20, 2015

(Phys.org)—Neurons might not be able to send signals as fast as electrons in wires or photons in fiber, but what if they can communicate using miniature sonic booms? That would be quite a revolutionary ...

Recommended for you

Inaccurate reporting jeopardizing clinical trials

5 hours ago

The team led by Dr Sheena Cruickshank of the Faculty of Life Sciences and Professor Andy Brass from the School of Computer Science analysed 58 papers on research into inflammatory bowel disease published between 2000 and ...

Fat signals control energy levels in the brain

Apr 23, 2015

An enzyme secreted by the body's fat tissue controls energy levels in the brain, according to new research at Washington University School of Medicine in St. Louis. The findings, in mice, underscore a role ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.