Huntington's disease study shows animal models on target

Jul 31, 2007

An international team of researchers has published a benchmark study showing that gene expression in several animal models of Huntington’s Disease (HD) closely resembles that of human HD patients.

The results, published August 1, 2007, in the journal Human Molecular Genetics, validate the applicability of using animal models to study human disease and will have important consequences for the pertinence of these models in preclinical drug testing.

Huntington's disease is an incurable and fatal hereditary neurodegenerative disorder caused by a mutation in the gene that encodes the huntingtin protein. Neurons in certain regions of the brain succumb to the effects of the altered protein, leading to severe motor, psychiatric, and cognitive decline. Several recent studies have shown that the mutant huntingtin protein modifies the transcriptional activity of genes in affected neurons. This disease mechanism is a promising new avenue for research into the causes of neuronal death and a novel potential approach for treatment.

Led by EPFL professor Ruth Luthi-Carter, and involving collaborators from six countries, the current study found a marked resemblance between the molecular etiology of neurons in animal models and neurons in patients with HD. This implies that animal models are relevant for studying human HD and testing potential treatments.

To come to this conclusion, the scientists measured the gene expression profile of seven different transgenic mouse models of HD, representing different conditions and disease stages. These profiles clarified the role of different forms and dosages of the protein hungtintin in the transcriptional activity of neurons. They then designed and implemented novel computational methods for quantifying similarities between RNA profiles that would allow for comparisons between the gene expression in mice and in human patients. “Interestingly, results of different testing strategies converged to show that several available models accurately recapitulate the molecular changes observed in human HD,” explains Luthi-Carter. “It underlines the suitability of these animal models for preclinical testing of drugs that affect gene transcription in Huntington’s Disease.”

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Throwing a loop to silence gene expression

add to favorites email to friend print save as pdf

Related Stories

Extinctions during human era worse than thought

5 hours ago

It's hard to comprehend how bad the current rate of species extinction around the world has become without knowing what it was before people came along. The newest estimate is that the pre-human rate was ...

Modern population boom traced to pre-industrial roots

5 hours ago

The foundation of the human population explosion, commonly attributed to a sudden surge in industrialization and public health during the 18th and 19th centuries, was actually laid as far back as 2,000 years ...

Changing global diets is vital to reducing climate change

Aug 31, 2014

A new study, published today in Nature Climate Change, suggests that – if current trends continue – food production alone will reach, if not exceed, the global targets for total greenhouse gas (GHG) emissi ...

Recommended for you

Throwing a loop to silence gene expression

4 hours ago

All human cells contain essentially the same DNA sequence – their genetic information. How is it possible that shapes and functions of cells in the different parts of the body are so different? While every cell's DNA contains ...

A nucleotide change could initiate fragile X syndrome

Sep 01, 2014

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

User comments : 0