How bacteria evolve into superbugs

Jul 27, 2007

Researchers at McGill and Oxford Universities have applied ecological and evolutionary theory to demonstrate how bacteria become resistant to antibiotics in hospitals.

Their study, published in the July 25 online edition of Proceedings of the Royal Society B: Biological Sciences, shows how high rates of immigration of bacteria into an environment containing antibiotics introduces sufficient genetic variation to cause the evolution of antibiotic resistance, a finding that sheds light on the growing incidence of highly antibiotic-resistant “superbug” bacteria such as Pseudomonas aeruginosa.

“Bacteria that can mutate fast will quickly adapt to harsh environments containing antibiotics. Our study showed that a high rate of immigration significantly augments the regular process of genetic mutation commonly used to explain the evolution of antibiotic resistance,” said co-author Dr. Andrew Gonzalez, a Canada Research Chair in Biodiversity and associate professor in the Department of Biology at McGill. Gonzalez explained that the flow of bacteria in the experiment is analogous to the immigration of bacteria-carrying individuals into a hospital, and “the rate at which bacteria are entering a particular environment – not just the fact that they are coming in – is a key factor.”

In evolutionary theory, any population that adapts to cope with new challenges (such as antibiotics) will make trade-offs in ways that limit its competitive ability against its predecessors in their original environment (free of antibiotics). But “superbug” bacteria are an exception, spreading to and persisting in many source environments, resulting in more infections. The study showed that as the rate of bacteria immigration increases, not only do those bacteria flourish by developing resistance to antibiotics, but they thrive as well as bacteria in places where there are no antibiotics.

Gonzalez explained that the source-sink model used in the study, a model employed by ecologists to measure how spatial variation in environmental conditions may affect population growth or decline, works on several scales. “The beauty of this theory is that it is broadly applicable to a range of clinical settings,” he said. While the principal sources of bacteria reside outside a hospital, the ventilation system and water supply inside frequently act as sources as well.

According to the US Centers for Disease Control (CDC), the bacterium Pseudomonas aeruginosa is the fourth most common pathogen found in hospitals. It accounts for 10 per cent of hospital-acquired infections in the respiratory, digestive and urinary tracts, bones and joints, and is a serious threat to patients with severe burns, cystic fibrosis and cancer. “With increased incidence of antibiotic resistance and a trend toward single-site super-hospitals, there is a growing need for greater understanding of how bacteria evolve,” said Gonzalez.

Source: McGill University

Explore further: Archaeological, genetic evidence expands views of domestication

add to favorites email to friend print save as pdf

Related Stories

Meteorites yield clues to Martian early atmosphere

22 minutes ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Japan lawmakers demand continued whaling

11 minutes ago

Japanese lawmakers on Wednesday demanded the government redesign its "research" whaling programme to circumvent an international court ruling that described the programme as a commercial hunt dressed up as ...

Progress in the fight against quantum dissipation

31 minutes ago

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Performance measures for CEOs vary greatly, study finds

36 minutes ago

As companies file their annual proxy statements with the U.S. Securities and Exchange Commission (SEC) this spring, a new study by Rice University and Cornell University shows just how S&P 500 companies have ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

1 hour ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...