Nanotech clay armour creates fire resistant hard wearing latex emulsion paints

Jul 26, 2007
Diagram of clay armour
Diagram of clay armour

Researchers at the University of Warwick's Department of Chemistry have found a way of replacing the soap used to stabilize latex emulsion paints with nanotech sized clay armour that can create a much more hard wearing and fire resistant paint.

To date latex emulsion paints have relied on the addition of soaps or similar materials to overcome the polymer parts of the paint's aversion to water, stabilize the paint, and make it work.

The University of Warwick chemistry researchers led by Dr Stefan Bon have found a simple way to individually coat the polymer particles used in such paints with a series of nanosized Laponite clay discs. The discs effectively create an armoured layer on the individual polymer latex particles in the paint. The clay discs are 1 nanometre thick by 25 nanometres in diameter.

The Lapointe clay discs can be applied using current industrial paint manufacture equipment. They not only provides an alternative to soap but can also be used to make the paint much more hard wearing and fire resistant.

The process devised by the Warwick team can be used to create highly sensitive materials for sensors. The researchers can take closely packed sample of the armoured polymers and heat it to burn away the polymer cores of the armoured particles leaving just a network of nanotech sized connected hollow spheres. This gives a very large useful surface area in a very small space which is an ideal material to use to create compact but highly sensitive sensors.

Their research is in a paper enitled "Pickering Miniemulsion Polymerization Using Laponite Clay as a Stabilizer" by Stefan A. F. Bon and Patrick J. Colver and is published as the cover article in Langmuir. The ACS Journal of Surfaces and Colloids Vol. 23, Issue 16 July 31.

Source: University of Warwick

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Ray tracing and beyond

29 minutes ago

Ray tracing is simple to explain at one level: "We all do it all day long: That's how you navigate the world visually," Gene Tracy explains. "The fact that I know that you're sitting there and not over there is because the ...

Going to extremes for enzymes

29 minutes ago

In the age-old nature versus nurture debate, Douglas Clark, a faculty scientist with Berkeley Lab and the University of California (UC) Berkeley, is not taking sides. In the search for enzymes that can break ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0