How to structure a complex body plan

Jul 25, 2007

Phenotypic flexibility enables multicellular organisms to adjust morphologies to variable environmental challenges. Such plastic variations are also documented in reef corals. Coral colonies are made of multiple genetically identical physiologically integrated modules (polyps).

Like other sedentary colonial marine organisms, corals may generate extremely broad structures, changing their morphologies by growing new polyps above existing structures. In branching forms, two higher levels of organization exist, the ‘branch’ and the ‘colony’. Despite the relative morphological simplicity of each module, branching corals can generate complex architectures at the colony level of organization.

In a study published in the July 25 issue of the online, open-access journal PLoS ONE, a group of scientists led by Dr. Rinkevich from the National Institute of Oceanography, Haifa, and Tel Aviv University, Israel, elucidated fixed and plastic architectural rules for colony formation in a common branching coral (Stylophora pistillata) from Eilat, the Red Sea, which develops spherical colonies.

The scientists examined 16 morphometric parameters on 136 one-year old colonies, all developed from different types of isolated branches, and found that the plastic morphometric characters are associated with the branch level whereas the fixed, predetermined morphometric traits are associated to the colony level.

In addition, the group found that, depending on the original branch structure, the spherical 3-D colonial architecture in this species is achieved by joining developmental processes at both, the branch and the colony levels of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that break the colony into fragments of different size and structure. Plastic developmental rules that are not predetermined and react to fragment structure allow the formation of species-specific architecture through variable developmental routes. This adaptive plasticity, or regeneration, is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces.

Source: Public Library of Science

Explore further: Study finds color and thickness of eggshells in wild birds related to light level exposure

add to favorites email to friend print save as pdf

Related Stories

Underwater elephants

21 hours ago

In the high-tech world of science, researchers sometimes need to get back to basics. UC Santa Barbara's Douglas McCauley did just that to study the impacts of the bumphead parrotfish (Bolbometopon muricatum) on cor ...

Coral comeback: Reef 'seeding' in the Caribbean

Feb 26, 2013

Mats of algae and seaweed have shrouded the once thick coral in shallow reefs off Jamaica's north coast. Warm ocean waters have bleached out the coral, and in a cascade of ecological decline, the sea urchins ...

Recommended for you

Saving seeds the right way can save the world's plants

2 hours ago

Exotic pests, shrinking ranges and a changing climate threaten some of the world's most rare and ecologically important plants, and so conservationists establish seed collections to save the seeds in banks ...

Sugar mimics guide stem cells toward neural fate

3 hours ago

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

Chinese mosquitos on the Baltic Sea

3 hours ago

The analysis of the roughly 3,000 pieces is still in its infant stage. But it is already evident that the results will be of major significance. "Amazingly often, we are finding–in addition to Asian forms–the ...

User comments : 0