Laser sets records in power and energy efficiency

Jul 24, 2007

The rise in global terrorism in recent years has brought significant attention to the needs for more advanced sensors and defense technologies to protect civilians and soldiers.

Next-generation laser-based defense systems are now being designed for this need, including the use of infrared countermeasures to protect aircraft from heat-seeking missiles and highly sensitive chemical detectors for reliable early detection of trace explosives and other toxins at a safe distance for personnel.

Since practical systems must be easily portable by a soldier, aircraft or unmanned vehicle, they must be lightweight, compact and power efficient. In addition, such systems also would need to be widely deployable and available to all soldiers, airplanes and public facilities, which requires a low production and operating cost. While several types of lasers exist today that can emit at the desired infrared wavelengths, none of these lasers meet the above requirements because they are either too expensive, not mass-producible, too fragile or require power-hungry and inefficient cryogenic refrigeration.

A new type of semiconductor-based laser, called the Quantum Cascade Laser (QCL), may soon change this situation. Like their computer chip cousins, semiconductors lasers are inherently compact and suitable for mass production, which has led to their widespread and low-cost use in everyday products, including CD and DVD players.

The Center for Quantum Devices (CQD) at Northwestern University, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at the McCormick School of Engineering and Applied Science, has recently made great strides in laser design, material growth and laser fabrication that have greatly increased the output power and wall-plug efficiency (the ability to change electrical power into light) of QCLs.

The CQD now has demonstrated individual lasers, 300 of which can easily fit on a penny, emitting at wavelengths of 4.5 microns, capable of producing over 700 milli-Watts of continuous output power at room temperature and more than one Watt of output power at lower temperatures.

Furthermore, these lasers are extremely efficient in converting electricity to light, having a 10 percent wall-plug efficiency at room temperature and more than 18 percent wall-plug efficiency at lower temperatures. This represents a factor of two increase in laser performance, which is far superior to any competing laser technology at this wavelength.

Source: Northwestern University

Explore further: New portable vacuum standard

add to favorites email to friend print save as pdf

Related Stories

Denmark likely to ban ridesharing service Uber

1 minute ago

Two months after the ride-hailing app Uber was introduced in Denmark, the country's transport minister has said the service likely will be banned because it violates Danish law.

Artificial intelligence future wows Davos elite

11 minutes ago

From the robot that washes your clothes to the robot that marks homework: the future world of artificial intelligence wowed the Davos elite Thursday, but the rosy picture came with a warning.

Got Battery? Lots of low battery hacks but no quick fix

26 minutes ago

At a cozy watering hole in Brooklyn's Bedford-Stuyvesant neighborhood, bartender Kathy Conway counted four different phone chargers behind the bar. Call it the scourge of the red zone, call it battery anxiety. ...

Recommended for you

New portable vacuum standard

20 hours ago

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

Prototype for first traceable PET-MR phantom

20 hours ago

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.