Laser sets records in power and energy efficiency

Jul 24, 2007

The rise in global terrorism in recent years has brought significant attention to the needs for more advanced sensors and defense technologies to protect civilians and soldiers.

Next-generation laser-based defense systems are now being designed for this need, including the use of infrared countermeasures to protect aircraft from heat-seeking missiles and highly sensitive chemical detectors for reliable early detection of trace explosives and other toxins at a safe distance for personnel.

Since practical systems must be easily portable by a soldier, aircraft or unmanned vehicle, they must be lightweight, compact and power efficient. In addition, such systems also would need to be widely deployable and available to all soldiers, airplanes and public facilities, which requires a low production and operating cost. While several types of lasers exist today that can emit at the desired infrared wavelengths, none of these lasers meet the above requirements because they are either too expensive, not mass-producible, too fragile or require power-hungry and inefficient cryogenic refrigeration.

A new type of semiconductor-based laser, called the Quantum Cascade Laser (QCL), may soon change this situation. Like their computer chip cousins, semiconductors lasers are inherently compact and suitable for mass production, which has led to their widespread and low-cost use in everyday products, including CD and DVD players.

The Center for Quantum Devices (CQD) at Northwestern University, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at the McCormick School of Engineering and Applied Science, has recently made great strides in laser design, material growth and laser fabrication that have greatly increased the output power and wall-plug efficiency (the ability to change electrical power into light) of QCLs.

The CQD now has demonstrated individual lasers, 300 of which can easily fit on a penny, emitting at wavelengths of 4.5 microns, capable of producing over 700 milli-Watts of continuous output power at room temperature and more than one Watt of output power at lower temperatures.

Furthermore, these lasers are extremely efficient in converting electricity to light, having a 10 percent wall-plug efficiency at room temperature and more than 18 percent wall-plug efficiency at lower temperatures. This represents a factor of two increase in laser performance, which is far superior to any competing laser technology at this wavelength.

Source: Northwestern University

Explore further: New multiscale model unifies physical laws of water flow to span all scales

add to favorites email to friend print save as pdf

Related Stories

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

LADEE mission ends with planned lunar impact

Apr 18, 2014

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Recommended for you

Atom probe assisted dating of oldest piece of earth

4 hours ago

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Teachers' scare tactics may lead to lower exam scores

As the school year winds down and final exams loom, teachers may want to avoid reminding students of the bad consequences of failing a test because doing so could lead to lower scores, according to new research published ...