N.C. Wyeth's coloring technique revealed by Cornell's synchrotron as it uncovers eight decades of paint

Jul 20, 2007
N.C. Wyeth's coloring technique revealed by Cornell's synchrotron as it uncovers eight decades of paint
CHESS senior research associate Arthur Woll adjusts equipment used for scanning N.C. Wyeth's "Family Portrait" (1924, Brandywine River Museum). Credit: Jason Koski/University Photography

The pentimento of a flying fist, just visible beneath layers of paint, triggered an investigation of N.C. Wyeth's "Family Portrait" at the Brandywine River Museum in Chadds Ford, Pa. A simple X-ray revealed that a 1919 magazine illustration lurked beneath the 1924 unfinished oil. An early recycler, Wyeth (Andrew's father) routinely painted new works over his illustrations.

A team of Cornell scientists and art conservators had found their next work of art to analyze.

The challenge: to identify and reconstruct the colors N.C. Wyeth used in the illustration, which had been printed in black and white. The team's technological advantage: the power of the Cornell High Energy Synchrotron Source (CHESS) and confocal X-ray fluorescence.

The museum X-ray was the equivalent of a dentist's office model: It shot straight through the canvas. The Cornell team, led by Arthur Woll, senior research associate at the National Science Foundation-supported CHESS, would employ X-rays many thousands of times more powerful to uncover Wyeth's color scheme, layer by layer.

"We're one of three groups in the world doing this with a synchrotron, one of two in the United States who are doing it at all," says Woll. "I don't think they're as far along as we are looking at real objects of art-historical interest. CHESS will produce data that will enable us to determine what the pigment composition is and, from that, what the different colors are. Our goal is to reproduce the painting the way it looked when it was first made."

"Family Portrait" arrived on campus for a week of X-rays July 7, accompanied by Jennifer Mass, senior scientist at the Winterthur Museum and Country Estate and a University of Delaware faculty member.

Says CHESS director Sol Gruner, "The key to getting this all to work is to combine the talents of the physicists at CHESS with a powerful group of collaborators, namely, Dr. Mass, Noelle Ocon, associate conservator of paintings at the North Carolina Museum of Art, Christina Bisulca, a graduate of the University of Delaware's program in conservation, and Matt Cushman, a student in the same program. Without these human connections, nothing would happen."

As X-rays from the synchrotron penetrate the painting, some are absorbed and re-emitted by atoms comprising the different pigments. The wavelength and amount of re-radiated X-rays reveal the identity and amount of pigments in particular spots.

"Our technique allows us to isolate the X-rays from individual layers, which is difficult or impossible with more conventional methods," says Gruner. "This capability turned out to be especially important for 'Family Portrait' since, as the team discovered early in the week, zinc is the primary component of both layers of the painting."

"N.C. Wyeth wanted to bury his illustrations, so information we can get about how he worked as an illustrator will be of great art-historical significance," Mass says. "The structure answers a lot of questions: What methods did he use? How did he work?"

The Wyeth analysis is Cornell's second art project. The process can be painstakingly slow: Scanning a portion the size of a quarter took nine hours. "We could speed up things by a factor of 10 or 100 with enough resources, such as a new kind of X-ray detector that can count X-rays much faster than current technology," Woll says.

Woll also collaborates with other Cornell physicists as well as with dendrochronologists, who do related work on tree-ring samples, such as oak panels used by most 17th century Dutch and Flemish masters.

Source: Cornell University

Explore further: Research band at Karolinska tuck Dylan gems into papers

add to favorites email to friend print save as pdf

Related Stories

Shape up quickly—applies to fish, too

15 minutes ago

Fish can live in almost any aquatic environment on Earth, but when the climate changes and temperatures go up many species are pushed to the limit. The amount of time needed to adjust to new conditions could ...

Entanglement made tangible

16 minutes ago

EPFL scientists have designed a first-ever experiment for demonstrating quantum entanglement in the macroscopic realm. Unlike other such proposals, the experiment is relatively easy to set up and run with existing semiconductor ...

New material steals oxygen from the air

18 minutes ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Recommended for you

Research band at Karolinska tuck Dylan gems into papers

16 hours ago

(Phys.org) —A 17-year old bet among scientists at the Karolinska Institute has been a wager that whoever wrote the most articles with Dylan quotes before they retired would get a free lunch. Results included ...

A simulation game to help people prep for court

Sep 25, 2014

Preparing for court and appearing before a judge can be a daunting experience, particularly for people who are representing themselves because they can't afford a lawyer or simply don't know all the ropes ...

When finding 'nothing' means something

Sep 25, 2014

Scientists usually communicate their latest findings by publishing results as scientific papers in journals that are almost always accessible online (albeit often at a price), ensuring fast sharing of latest ...

User comments : 0