Measuring the unseeable: Researchers probe proteins' 'dark energy'

Jul 19, 2007
Penn Researchers Probe Proteins
Artist rendering of calmodulin molecule depicting protein 'dark energy.' Credit: Mary Leonard and Michael Marlow, PhD, University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine are the first to observe and measure the internal motion inside proteins, or its “dark energy.” This research, appearing in the current issue of Nature has revealed how the internal motion of proteins affects their function and overturns the standard view of protein structure-function relationships, suggesting why rational drug design has been so difficult.

The situation is akin to the discussion in astrophysics in which theoreticians predict that there is dark matter, or energy, that no one has yet seen,” says senior author A. Joshua Wand, PhD, Benjamin Rush Professor of Biochemistry. “Biological theoreticians have been kicking around the idea that proteins have energy represented by internal motion, but no one can see it. We figured out how to see it and have begun to quantify the so-called ‘dark energy’ of proteins.”

Proteins are malleable in shape and internal structure, which enables them to twist and turn to bind with other proteins. “The motions that we are looking at are very small, but very fast, on the time scale of billions of movements per second,” explains Wand. “Proteins just twitch and shake.” The internal motion represents a type of energy called entropy.

Current models of protein structure and function used in research and drug design often do not account for their non-static nature. “The traditional model is almost a composite of all the different conformations a protein could take” says Wand.

The researchers measured a protein called calmodulin and its interactions with six other proteins when bound to a protein partner one at a time. These binding partners included proteins important in smooth muscle contraction and a variety of brain functions.

Using nuclear magnetic resonance spectroscopy, the investigators were able to look at the changes in the internal motion of calmodulin itself in each of the six different protein binding situations. They found a direct correlation between a change in calmodulin’s entropy –a component of its stored energy – and the total entropy change leading to the formation of the calmodulin-protein complex. Finding out the contribution from individual proteins versus the entropy, or movement, of the entire protein complex has been more difficult and has been overcome in this study. From this individual contribution they deduced that changes in the entropy of the protein are indeed important to the process of calmodulin binding its partners.

“Before these unexpected results, most researchers in our field would have predicted that entropy’s contribution to protein-protein interactions would be zero or negligible,” says Wand. “But now it’s clearly an important component of the total energy in protein binding.”

Because of this new information, the researchers suggest that the entropy component may explain why drug design fails more often than it works. Currently, drugs are designed generally based on the precise structures of their biological targets, active regions on proteins that are intended to inhibit key molecules. However, the number of designed molecules actually binding to their targets is low for many engineered molecules. “We think that this is because the design is based on a model of a static protein, not the moving, hyper protein that is constantly changing shape,” say Wand. “We need to figure out how this new information fits in and perhaps drug design could be significantly improved.”

Future directions include understanding whether the principles revealed by this study are universal and impact the thousands of protein-protein interactions that underlie biology and disease. As Wand explains, “Protein-protein interactions are central to ‘signalling’, which is often the molecular origin of diseases. Cancer, diabetes, and asthma are three important examples. We are currently looking at the role of protein entropy in the control of critical signaling events in all three.”

Source: University of Pennsylvania

Explore further: Free the seed: OSSI nurtures growing plants without patent barriers

add to favorites email to friend print save as pdf

Related Stories

For cells, internal stress leads to unique shapes

2 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Making dams safer for fish around the world

Apr 14, 2014

Think of the pressure change you feel when an elevator zips you up multiple floors in a tall building. Imagine how you'd feel if that elevator carried you all the way up to the top of Mt. Everest – in the ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Hackers of Oman news agency target Bouteflika

Hackers on Sunday targeted the website of Oman's official news agency, singling out and mocking Algeria's newly re-elected president Abdelaziz Bouteflika as a handicapped "dictator".

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...