Outwitting pesky parasites

Jul 15, 2007

Across the southern United States, an invisible, yet deadly parasite known as the root-knot nematode is crippling soybean crops. While plant breeders are racing to develop cultivars resistant to the root-knot nematode, they are being slowed down by current time-consuming and expensive methods of screening for resistant plants. Now, researchers believe they have found a shortcut for screening resistant soybean crops.

Researchers at the University of Georgia report the discovery of several molecular markers that will help soybean breeders to accurately screen for root-knot resistant plants at a fraction of the time and cost of current screening techniques in the July issue of The Plant Genome.

While previous studies of soybean crops helped researchers to locate genes associated with root-knot nematode resistance, University of Georgia scientists recently identified single nucleotide polymorphisms (SNPs), slight variations in the DNA, nearby genetic regions that code root-knot nematode resistance. After linking the identified SNPs to root-knot nematode resistance, scientists developed a marker assisted screening test that used SNPs to determine whether or not plants were resistant to root-knot nematode.

“The basic objective of any breeding scheme is to identify elite individuals that can pass on their desirable characteristics,” explained Bo-Keun Ha, lead author of study. While Ha says most conventional breeders rely on phenotypic evaluations of plants to select the plant with most desirable traits, this process takes time and money. For example, if a breeder wants to select plants with resistance to root-knot nematode based upon a phenotypic evaluation alone, he or she must grow a large population of plants, inoculate plants with nematode eggs, wait until the growth of the nematode and evaluate the damage before selecting the most resistant plants.

Instead of relying on the time-consuming phenotypic screening to determine whether or not the root-knot resistance genes are present in soybean crops, “marker assisted selection can inform breeders about the presence of the resistance gene in individual plants,” said Ha. Also, because marker assisted selection involves the screening of a few markers across thousands of plants Ha pointed out that the marker assisted selection is rather inexpensive and time efficient.

“Our results found SNPs linked to two root-knot nematode resistance genes and developed the resources for a relatively high throughput method of selection for the two genes,” said Ha. “The SNP assays that we have reported will empower soybean breeders to efficiently incorporate root-knot resistance genes into new productive cultivars.”

Source: Crop Science Society of America

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Thanksgiving travel woes? There's an app for that

15 minutes ago

Traveling by plane, train or automobile can be a headache. Mixing in Thanksgiving can make it a throbbing migraine. Technology provides some pain relief in the form of apps to let you know which roads are ...

Brazil says pace of Amazon deforestation down 18%

10 minutes ago

The pace of deforestation in Brazil's Amazon basin fell 18 percent over the past year, the government said Wednesday, dismissing as speculation reports of a huge increase in forest loss last month.

DNA survives critical entry into Earth's atmosphere

48 minutes ago

The genetic material DNA can survive a flight through space and re-entry into the earth's atmosphere—and still pass on genetic information. A team of scientists from UZH obtained these astonishing results ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

14 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

14 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

18 hours ago

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.