Speed Bumps Less Important Than Potholes for Graphene

Jul 12, 2007
Speed Bumps Less Important Than Potholes for Graphene
Comparison of an STM topographic image of a section of graphene sheet (top left) with spectroscopy images of electron interference at three different energies shows strong interference patterns generated by atomic scale defects in the graphene crystal (red arrows) but only modest disturbances caused by larger scale bumps in the sheet (blue arrows.) Analysis of the ripples shows that the electron energy in graphene is inversely proportional to its wavelength, just like light waves. The area imaged is approximately 40 nanometers square. Credit: NIST/Georgia Tech

For electrical charges racing through an atom-thick sheet of graphene, occasional hills and valleys are no big deal, but the potholes—single-atom defects in the crystal—they’re killers.

That’s one of the conclusions reached by researchers from the National Institute of Standards and Technology (NIST) and the Georgia Institute of Technology who created detailed maps of electron interference patterns in graphene to understand how defects in the two-dimensional carbon crystal affect charge flow through the material. The results, appearing in the July 13 issue of Science, have implications for the design of graphene-based nanoelectronics.

Speed Bumps Less Important Than Potholes for Graphene
Comparison of an STM topographic image of a section of graphene sheet (top left) with spectroscopy images of electron interference at three different energies shows strong interference patterns generated by atomic scale defects in the graphene crystal (red arrows) but only modest disturbances caused by larger scale bumps in the sheet (blue arrows.) Analysis of the ripples shows that the electron energy in graphene is inversely proportional to its wavelength, just like light waves. The area imaged is approximately 40 nanometers square. Credit: NIST/Georgia Tech

A single layer of carbon atoms tightly arranged in a honeycomb pattern, graphene was long thought to be an interesting theoretical concept that was impossible in practice—it would be too unstable, and crumple into some other configuration. The discovery, in 2004, that graphene actually could exist touched off a rush of experimentation to explore its properties.

Graphene has been described as a carbon nanotube unrolled, and shares some of the unique properties of nanotubes. In particular, it’s a so-called ballistic conductor, meaning that electrons flow through it at high speed, like photons through a vacuum, with virtually no collisions with the atoms in the crystal. This makes it a potentially outstanding conductor for wires and other elements in nanoscale electronics.

Defects or irregularities in the graphene crystal, however, can cause the electrons to bounce back or scatter, the equivalent of electrical resistance, so one key issue is just what sort of defects cause scattering, and how much?

To answer this, the NIST-Georgia Tech team grew layers of graphene on wafers of silicon carbide crystals and mapped the sheets with a custom-built scanning tunneling microscope (STM) in the NIST Center for Nanoscale Science and Technology that can measure both physical surface features and the interference patterns caused by electrons scattering in the crystal. (Graphene on silicon carbide is a leading candidate for graphene-based nanoelectronics.)

The results are counter-intuitive. Irregularities in the underlying silicon carbide cause bumps and dips in the graphene sheet that lies over it rather like a blanket on a lumpy bed, but these relatively large bumps have only a minor effect on the electron’s passage. In contrast, missing carbon atoms in the crystal lattice cause strong scattering, the interference patterns rippling around them like waves hitting the piles of a pier. From a detailed analysis of these interference patterns, the team verified that electrons in the graphene sheet behave like photons, even at the nanometer scale.

Citation: G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First and J.A. Stroscio. Scattering and interference in epitaxial graphene. Science 13 July 2007

Source: NIST

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

add to favorites email to friend print save as pdf

Related Stories

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Physicists control light scattering in graphene

Mar 16, 2011

Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley have learned to control the quantum pathways determining how light scatters in graphene. Controlled ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0