How plants learned to respond to changing environments

Jul 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their life cycle such as germination and flowering, to take advantage of environmental conditions.

They can also repress growth when their environment is not favourable. This involves many complex signalling pathways which are integrated by the plant growth hormone gibberellin.

Publishing in the journal Current Biology, the researchers looked at how plants evolved this ability by looking at the genes involved in the gibberellin signalling pathway in a wide range of plants. They discovered that it was not until the flowering plants evolved 300 million years ago that plants gained the ability to repress growth in response to environmental cues.

All land plants evolved from an aquatic ancestor, and it was after colonisation of the land that the gibberellin mechanism evolved. The earliest land plants to evolve were the bryophyte group, which includes liverworts, hornworts and ancestral mosses, many of which still exist today. The ancestral mosses have their own copies of the genes, but the proteins they make do not interact with each other and can’t repress growth. However, the moss proteins work the same as their more recently evolved counterparts when transferred into modern flowering plants.

The lycophyte group, which evolved 400 million years ago, were the first plants to evolve vascular tissues - specialized tissues for transporting water and nutrients through the plant. This group of plants also have the genes involved in the gibberellin signalling mechanism, and the products of their genes are able to interact with each other, and the hormone gibberellin. However this still does not result in growth repression. Not until the evolution of the gymnosperms (flowering plants) 300 million years ago are these interacting proteins able to repress growth. This group of plants became the most dominant, and make up the majority of plant species we see today.

Evolution of this growth control mechanism appears to have happened in a series of steps, which this study is able to associate with major stages in the evolution of today’s flowering plants. It also involves two types of evolutionary change. As well as structural changes that allow the proteins to interact, flowering plants have also changed the range of genes that are turned on and off in response to these proteins. This work was supported by the Biotechnology and Biological Sciences Research Council.

Source: Norwich BioScience Institutes

Explore further: EU court clears stem cell patenting

add to favorites email to friend print save as pdf

Related Stories

Fun cryptography app pleases students and teachers

55 minutes ago

Up on Google Play this week is Cryptoy...something that you might want to check out if you or someone you know wishes entry into the world of cryptography via an educational and fun app. You learn more about ciphers and keys; you ...

Washington takes on Uber with its own taxi app

14 hours ago

Washington is developing a smartphone app to enable its taxis to compete head-on with Uber and other ride-sharing services, the US capital's taxi commission said Friday.

Recommended for you

EU court clears stem cell patenting

22 minutes ago

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

Protections blocked, but sage grouse work goes on

15 hours ago

(AP)—U.S. wildlife officials will decide next year whether a wide-ranging Western bird species needs protections even though Congress has blocked such protections from taking effect, Interior Secretary ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.