A First-Principles Model of Early Evolution

Jul 11, 2007

In a study publishing in PLoS Computational Biology, Shakhnovich et al present a new model of early biological evolution – the first that directly relates the fitness of a population of evolving model organisms to the properties of their proteins.

Key to understanding biological evolution is an important, but elusive, connection, known as the genotype-phenotype relationship, which translates the survival of entire organisms into microscopic selection for particular advantageous genes, or protein sequences. The study of Shakhnovich et al establishes such connections by postulating that the death rate of an organism is determined by the stability of the least stable of their proteins.

The simulation of the model proceeds via random mutations, gene duplication, organism births via replication, and organism deaths.

The authors find that survival of the population is possible only after a ‘’Big Bang’’ when a very small number of advantageous protein structures is suddenly discovered and exponential growth of the population ensues. The subsequent evolution of the Protein Universe occurs as an expansion of this small set of proteins through a duplication and divergence process that accompanies discovery of new proteins.

The model resolves one of the key mysteries of molecular evolution – the origin of highly uneven distribution of fold family and gene family sizes in the Protein Universe. It quantitatively reproduces these distributions pointing out their origin in biased post “Big Bang’’ evolutionary dynamics of discovery of new proteins. The number of genes in the evolving organisms depends on the mutation rate, demonstrating the intricate relationship between macroscopic properties of organisms – their genome sizes – and microscopic properties – stabilities – of their proteins.

The results of the study suggest a plausible comprehensive scenario of emergence and growth of the Protein Universe in early biological evolution.

Citation: Zeldovich KB, Chen P, Shakhnovich BE, Shakhnovich EI (2007) A first-principles model of early evolution: Emergence of gene families, species, and preferred protein folds. PLoS Comput Biol 3(7): e139. doi:10.1371/journal.pcbi.0030139
compbiol.plosjournals.org/perl… journal.pcbi.0030139

Source: PLOS

Explore further: Scientists find key to te first cell differentiation in mammals

add to favorites email to friend print save as pdf

Related Stories

Why white dogs are white

Aug 13, 2014

(Phys.org) —About half of all dogs show some form of white spotting which can range from a few white marks in the Bernese mountain dog to extreme white coat color in Dalmatians and white boxer. But why ...

From eons to seconds, proteins exploit the same forces

Aug 12, 2014

(Phys.org) —Nature's artistic and engineering skills are evident in proteins, life's robust molecular machines. Scientists at Rice University have now employed their unique theories to show how the interplay ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Recommended for you

Research helps identify memory molecules

1 hour ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Sorghum and biodiversity

1 hour ago

It is difficult to distinguish the human impact on the effects of natural factors on the evolution of crop plants. A Franco-Kenyan research team has managed to do just that for sorghum, one of the main cereals ...

Robotics to combat slimy pest

1 hour ago

One hundred years after they arrived in a sack of grain, white Italian snails are the target of beleaguered South Australian farmers who have joined forces with University of Sydney robotics experts to eradicate ...

User comments : 0