A new type of spin valve that uses graphene

Jul 09, 2007 By Miranda Marquit feature

“Some people think that graphene, a form of carbon, is the material of the future,” Allen Goldman tells PhysOrg.com. “It’s of high scientific interest because of its unusual electronic properties.”

Goldman is a scientist at the University of Minnesota in Minneapolis. Working with Masaya Nishioka, also at the University of Minnesota, Goldman has found new insight into spin transport in graphene. Their findings are published in an article titled “Spin transport through multilayer graphene,” published in Applied Physics Letters.

Goldman and Nishioka have created a spin valve, and also observed a magnetic field controlled resistance change of 0.39%. “It’s not a huge effect,” Goldman admits, “but it is a step.” He explains that this is not the first spin valve, but that it is the first that is “reasonably well characterized.” He continues: “This isn’t a huge breakthrough, but it is an incremental step in understanding graphene, and also a step in understanding whether this material has use in spin dependent electronics.”

Spin dependent electronics, or “spintronics,” makes use of quantum spin states of electrons. Applications for spintronic devices, and spin valves in particular, are currently limited to mass-storage systems. However, the technology and science is so emergent, that further applications are possible. The spin valve, which is what Goldman and Nishioka’s work describes, makes use of magnetic thin films to control the resistive state of graphene: “We’re talking about a memory device that doesn’t have to be refreshed, and that is not volatile.”

Because of its high electron mobility and low atomic number, graphene is of special interest in spintronics, and this is why Goldman and Nishioka chose to work with it. “The process seems really very simple,” says Goldman. He then writes via email to explain the process: “We take a substrate of silicon, which is doped and coated with silicon oxide. Then we place graphene flakes on the surface, and after selecting a suitable flake, fabricate a pair of cobalt electrodes to contact the flake. We can then switch the resistive state of the flake by controlling the relative orientations of the magnetizations of the electrodes.”

But there are caveats. “Even though the set up is simple, it can be hard to make these devices,” Goldman says over the phone. “And even though we can make graphene, it is a difficult process, especially to make single-layer graphene, which is why use multilayer graphene.” He emphasizes again that the effect he and Nishioka observed was quite small.

The goal, Goldman says, is to be able to master graphene to an extent that it would become possible to produce technologically useful devices. “Right now, we are at a point where we deal with little flakes. We need to work with films that are ordered over macroscopic distances,” he says.

Goldman feels that there is potential in graphene. “I don’t really know if it is the material of the future,” he explains, “but this experiment brings us a step closer to understanding it better. If the problems with graphene can be solved, there is a very good chance that it could be very useful.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.