Electronic 'crowd behavior' revealed in semiconductors

Jul 07, 2007
Electronic 'crowd behavior' revealed in semiconductors
Physicists at JILA have confirmed subtle "collective behavior" among electronic structures in semiconductors, research that may help improve the design of optoelectronic devices. In the first image (#1, showing new experimental data), matching large peaks in the foreground, showing energy intensity ranging from low in blue to high in red, indicate that pairs of large electronic particles called excitons are oscillating in concert as they absorb ultrafast laser light and emit energy at various frequencies. The data match new theoretical models accounting for all electronic properties of semiconductors (image #2) much better than older theoretical models. Credit: JILA and University of Marburg

Like crowds of people, microscopic particles can act in concert under the right conditions. By exposing crowd behavior at the atomic scale, scientists discover new states and properties of matter.

Now, ultrafast lasers have revealed a previously unseen type of collective electronic behavior in semiconductors, which may help in the design of optoelectronic devices. The work at JILA, a joint venture of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, is described in a new paper in the Proceedings of the National Academy of Sciences.

Electronic 'crowd behavior' revealed in semiconductors
Physicists at JILA have confirmed subtle "collective behavior" among electronic structures in semiconductors, research that may help improve the design of optoelectronic devices. Credit: JILA and University of Marburg

Design of optoelectronic devices, like the semiconductor diode lasers used in telecommunications, currently involves a lot of trial and error. A designer trying to use basic theory to calculate the characteristics of a new diode laser will be off by a significant amount because of subtle interactions in the semiconductor that could not be detected until recently.

To shed light on these interactions, the JILA team used a highly sensitive and increasingly popular method of manipulating laser light energy and phase (the point in time when a single light wave begins) to reveal the collective behavior of electronic particles that shift the phase of any deflected light. Their work is an adaptation of a technique that was developed years ago by other researchers to probe correlations between spinning nuclei as an indicator of molecular structure (and led to a Nobel prize).

In the latest JILA experiments, a sample made of thin layers of gallium arsenide was hit with a continuous series of three near-infrared laser pulses lasting just 100 femtoseconds each. Trillions of electronic structures called excitons were formed. Excitons are large, fluffy particles consisting of excited electrons and the “holes” they left behind as they jumped to higher-energy vibration patterns.

By tinkering with the laser tuning—the frequency and orientation of the electric field—and analyzing how the semiconductor altered the intensity and phase of the light, the researchers identified a subtle coupling between pairs of excitons with different energy levels, or electron masses. The experimental data matched advanced theoretical calculations of the electronic properties of semiconductors, confirming the importance of the collective exciton behavior—and dramatically demonstrated the superiority of those calculations over simpler models of semiconductor behavior (see graphic).

Citation: T. Zhang, I. Kuznetsova, T. Meier, X. Li, R.P. Mirin, P. Thomas and S.T. Cundiff. Polarization-dependent optical two-dimensional Fourier transform spectroscopy of semiconductors. Proceedings of the National Academy of Sciences. Scheduled to be posted on-line July 6.


Source: National Institute of Standards and Technology

Explore further: Vortex of electrons provides unprecedented information on magnetic quantum states in solids

add to favorites email to friend print save as pdf

Related Stories

Building a better battery

Nov 25, 2014

Imagine an electric car with the range of a Tesla Model S - 265 miles - but at one-fifth the $70,000 price of the luxury sedan. Or a battery able to provide many times more energy than today's technology ...

Recommended for you

Scientists film magnetic memory in super slow-motion

14 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.