ILC's High-Energy Collisions Require Accurate Energy Measurements

Jul 03, 2007
ILC's High-Energy Collisions Require Accurate Energy Measurements
University of California, Berkeley, student Erik Petigura (left) and Alexey Lyapin of University College London stand by components of the energy spectrometer in End Station A.

The International Linear Collider (ILC) collaboration proposes to crash electron and positron beams together with a total energy of 500 GeV (billion electron volts). The actual energy of each beam will vary slightly from one bunch of particles to the next, so just before the collision point, energy spectrometers will measure each bunch's exact energy.

"We need to be able to measure the beam energy with an accuracy of one part in 10,000 to establish the masses of the new particles we'll hopefully see," said Yury Kolomensky, associate professor of physics at the University of California-Berkeley.

Kolomensky and his collaborators (from SLAC, the University of California, Berkeley, and the University of Notre Dame in the U.S.; University College London, Royal Holloway College, and Cambridge University in the U.K.; DESY in Germany; and Dubna in Russia) have installed their prototype energy spectrometer on the beam line in End Station A. For most of July, a test beam of electrons will whiz down the beam line, letting Kolomensky and others test equipment under ILC-like conditions. The energy of the test beam is about ten times less than that of an ILC beam, but has the same bunch length and charge.

Existing spectrometers can't provide the required accuracy for a single bunch at a time. The prototype starts where most energy spectrometers do, with a set of magnets that deflect the beam. Beam position monitors, provided by SLAC and a group from University College London, measure the amount of deflection. The higher the beam's energy, the less the beam gets deflected. In End Station A, four magnets bend the beam about 5 millimeters horizontally over the course of the 20-meter-long energy spectrometer set-up.

In addition, the prototype has a way to very precisely and very accurately measure the magnetic field over the entire spectrometer during each pulse of the beam. 'Precisely' is like throwing darts that all land very close to one another; 'accurately' is all those darts hitting the bull's-eye. Collaborators from DESY and Dubna worked with the Magnetic Measurement Group at SLAC this past fall and winter to determine the magnetic fields at all positions along the beam trajectory through the spectrometer magnets.

After testing the components in March, researchers are now ready to run. "The goal is to have a demonstration of the technology that will ultimately go into the ILC design," Kolomensky said.

Source: by Heather Rock Woods, SLAC Today

Explore further: Engineers develop new methods to speed up simulations in computational grand challenge

add to favorites email to friend print save as pdf

Related Stories

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

Short circuit delays particle hunter machine restart

Mar 25, 2015

A short-circuit at the world's largest proton smasher has indefinitely delayed the particle-hunting machine's planned restart, the European Organisation for Nuclear Research (CERN) said on Wednesday.

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

Recreating the heart of a star on Earth

Mar 24, 2015

By recreating the extreme conditions similar to those found half-way into the Sun in a thin metal foil, Oxford University researchers have captured crucial information about how electrons and ions interact in a unique state ...

Recommended for you

Fluctuation X-ray scattering

20 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

22 hours ago

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

Behind the dogmas of good old hydrodynamics

Mar 26, 2015

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.